Recently it has been shown, that if a weight has the doubling property on its support [− 1,1], then the zeros of the associated orthogonal polynomials are uniformly spaced: if θ m,j and θ m,j +1 are the places in [0,π], for which cosθ m,j and cosθ m,j +1 is the j -th and the j +1-th zero of the m -th orthogonal polynomial, then θ m,j − θ m,j +1 ∼ 1/ m . In this paper it is shown, that this result is also true in a local sense: if a weight has the doubling property in an interval of its support, then uniform spacing of the zeros is true inside that interval. The result contains as special cases some theorems of Last and Simon on local zero spacing of orthogonal polynomials.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertUniform spacing of zeros of orthogonal polynomials for locally doubling measuresLizenziert2. April 2013
-
Erfordert eine Authentifizierung Nicht lizenziertA uniqueness polynomial for equi-polar meromorphic functionsLizenziert2. April 2013
-
Erfordert eine Authentifizierung Nicht lizenziertThe spectrum of the Hausdorff operator on a subspace of L2(ℝ)Lizenziert2. April 2013
-
Erfordert eine Authentifizierung Nicht lizenziertAn application of q-mathematics on absolute summability of orthogonal seriesLizenziert2. April 2013
-
Erfordert eine Authentifizierung Nicht lizenziertOn proofs for monotonicity of a function involving the psi and exponential functionsLizenziert2. April 2013
-
Erfordert eine Authentifizierung Nicht lizenziertOn the (M,λn) method of summabilityLizenziert2. April 2013
-
Erfordert eine Authentifizierung Nicht lizenziertDevelopments of the theory of generalized functions or distributions – A vision of Paul DiracLizenziert2. April 2013