A celebrated result of S. Bernstein [3] states that every solution of the minimal surface equation over the entire plane ℝ 2 has to be an affine linear function. Since the paper of Bernstein appeared in 1927, many different proofs and generalizations of this beautiful theorem were given, namely to higher dimensions and to more general equations, for a careful account we refer to the paper by Simon [6] and to the monograph by Dierkes, Hildebrandt, and Tromba [4, Chap. 3]. In his paper Simon [5] posed the question whether the equation (1+ u x 2 ) u xx +2 u x u y u xy +(1+ u y 2 ) u yy = 0 (1.1) has the Bernstein property i.e. whether every C 2 -solution defined on all of ℝ 2 necessarily has to be affine. We here show by a very simple argument that this is not the case.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertThe “Wrong Minimal Surface Equation” does not have the Bernstein propertyLizenziert28. November 2011
-
Erfordert eine Authentifizierung Nicht lizenziertTwo optimal families of iterative methods for solving nonlinear equationsLizenziert28. November 2011
-
Erfordert eine Authentifizierung Nicht lizenziertIsometric embedding of semi-Riemannian metrics into Minkowski spaceLizenziert28. November 2011
-
Erfordert eine Authentifizierung Nicht lizenziertEntire functions sharing one value with linear differential polynomialsLizenziert28. November 2011
-
Erfordert eine Authentifizierung Nicht lizenziertMeromorphic functions that share one small function with their k-th derivativeLizenziert28. November 2011
-
Erfordert eine Authentifizierung Nicht lizenziertApproximation schemes for solving disturbed control problems with non-terminal time and state constraintsLizenziert28. November 2011
-
Erfordert eine Authentifizierung Nicht lizenziertSome kinds of convergence defined by Folner sequencesLizenziert28. November 2011