The mineralogy of terrestrial planets evolves as a consequence of a range of physical, chemical, and biological processes. In pre-stellar molecular clouds, widely dispersed microscopic dust particles contain approximately a dozen refractory minerals that represent the starting point of planetary mineral evolution. Gravitational clumping into a protoplanetary disk, star formation, and the resultant heating in the stellar nebula produce primary refractory constituents of chondritic meteorites, including chondrules and calcium-aluminum inclusions, with ~60 different mineral phases. Subsequent aqueous and thermal alteration of chondrites, asteroidal accretion and differentiation, and the consequent formation of achondrites results in a mineralogical repertoire limited to ~250 different minerals found in unweathered meteorite samples. Following planetary accretion and differentiation, the initial mineral evolution of Earth’s crust depended on a sequence of geochemical and petrologic processes, including volcanism and degassing, fractional crystallization, crystal settling, assimilation reactions, regional and contact metamorphism, plate tectonics, and associated large-scale fluid-rock interactions. These processes produced the first continents with their associated granitoids and pegmatites, hydrothermal ore deposits, metamorphic terrains, evaporites, and zones of surface weathering, and resulted in an estimated 1500 different mineral species. According to some origin-of-life scenarios, a planet must progress through at least some of these stages of chemical processing as a prerequisite for life. Biological processes began to affect Earth’s surface mineralogy by the Eoarchean Era (~3.85-3.6 Ga), when large-scale surface mineral deposits, including banded iron formations, were precipitated under the influences of changing atmospheric and ocean chemistry. The Paleoproterozoic “Great Oxidation Event” (~2.2 to 2.0 Ga), when atmospheric oxygen may have risen to >1% of modern levels, and the Neoproterozoic increase in atmospheric oxygen, which followed several major glaciation events, ultimately gave rise to multicellular life and skeletal biomineralization and irreversibly transformed Earth’s surface mineralogy. Biochemical processes may thus be responsible, directly or indirectly, for most of Earth’s 4300 known mineral species. The stages of mineral evolution arise from three primary mechanisms: (1) the progressive separation and concentration of the elements from their original relatively uniform distribution in the pre-solar nebula; (2) an increase in range of intensive variables such as pressure, temperature, and the activities of H 2 O, CO 2 , and O 2 ; and (3) the generation of far-from-equilibrium conditions by living systems. The sequential evolution of Earth’s mineralogy from chondritic simplicity to Phanerozoic complexity introduces the dimension of geologic time to mineralogy and thus provides a dynamic alternate approach to framing, and to teaching, the mineral sciences.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertReview Paper. Mineral evolutionLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertAmorphous materials: Properties, structure, and durability: Structure of Mg- and Mg/Ca aluminosilicate glasses: 27Al NMR and Raman spectroscopy investigationsLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertAmorphous materials: Properties, structure, and durability: Constrained interactions, rigidity, adaptative networks, and their role for the description of silicatesLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertAmorphous materials: Properties, structure, and durability: Quantification of the kinetics of iron oxidation in silicate melts using Raman spectroscopy and assessment of the role of oxygen diffusionLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertAmorphous materials: Properties, structure, and durability: Solubility and solution mechanisms of NOH volatiles in silicate melts at high pressure and temperature—amine groups and hydrogen fugacityLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertHigh- and ultrahigh-pressure metamorphism: Past results and future prospectsLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertCrystal structure of a synthetic tin-selenium representative of the cylindrite structure typeLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertNano to macroscale biomineral architecture of red coral (Corallium rubrum)Lizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertTimescales of spherulite crystallization in obsidian inferred from water concentration profilesLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertCompression of single-crystal magnesium oxide to 118 GPa and a ruby pressure gauge for helium pressure mediaLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertIn situ high-pressure single-crystal X-ray study of aegirine, NaFe3+Si2O6, and the role of M1 size in clinopyroxene compressibilityLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertOxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsulesLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertCoesite inclusions in garnet from eclogitic rocks in western Tianshan, northwest China: Convincing proof of UHP metamorphismLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertCrystal chemistry of macfallite: Relationships to sursassite and pumpellyiteLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertBacterially enhanced dissolution of meta-autuniteLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertCommon gem opal: An investigation of micro- to nano-structureLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertStructural transition of post-spinel phases CaMn2O4, CaFe2O4, and CaTi2O4 under high pressures up to 80 GPaLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertPressure-temperature stability studies of FeOOH using X-ray diffractionLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertThe parental melt of lherzolitic shergottite ALH 77005: A study of rehomogenized melt inclusionsLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertFerric iron content in (Mg,Fe)SiO3 perovskite and post-perovskite at deep lower mantle conditionsLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertLakargiite CaZrO3: A new mineral of the perovskite group from the North Caucasus, Kabardino-Balkaria, RussiaLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertXocolatlite, Ca2Mn4+2 Te2O12·H2O, a new tellurate related to kuranakhite: Description and measurement of Te oxidation state by XANES spectroscopyLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertPyroxmangite: A high-pressure single-crystal studyLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertLetter. Continuous time-resolved X-ray diffraction of the biocatalyzed reduction of Mn oxideLizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertLetter. Igneous Ca-rich pyroxene in comet 81P/Wild 2Lizenziert1. April 2015
-
Erfordert eine Authentifizierung Nicht lizenziertLetter. A unique glimpse into asteroidal melting processes in the early solar system from the Graves Nunatak 06128/06129 achondritesLizenziert1. April 2015