Decades of study have documented several orders of magnitude variation in the oxygen fugacity $\left( {{f}_{{{\text{O}}_{2}}}} \right)$of terrestrial magmas and of mantle peridotites. This variability has commonly been attributed either to differences in the redox state of multivalent elements (e.g., Fe 3+ /Fe 2+ ) in mantle sources or to processes acting on melts after segregation from their sources (e.g., crystallization or degassing). We show here that the phase equilibria of plagioclase, spinel, and garnet lherzolites of constant bulk composition (including whole-rock Fe 3+ /Fe 2+ ) can also lead to systematic variations in fO2${{f}_{{{\text{O}}_{2}}}}$in the shallowest ~100 km of the mantle. Two different thermodynamic models were used to calculate fO2${{f}_{{{\text{O}}_{2}}}}$vs. pressure and temperature for a representative, slightly depleted peridotite of constant composition (including total oxygen). Under subsolidus conditions, increasing pressure in the plagioclase-lherzolite facies from 1 bar up to the disappearance of plagioclase at the lower pressure limit of the spinel-lherzolite facies leads to an fO2${{f}_{{{\text{O}}_{2}}}}$decrease (normalized to a metastable plagioclase-free peridotite of the same composition at the same pressure and temperature) of ~1.25 orders of magnitude. The spinel-lherzolite facies defines a minimum in fO2${{f}_{{{\text{O}}_{2}}}}$and increasing pressure in this facies has little influence on fO2${{f}_{{{\text{O}}_{2}}}}$(normalized to a metastable spinel-free peridotite of the same composition at the same pressure and temperature) up to the appearance of garnet in the stable assemblage. Increasing pressure across the garnet-lherzolite facies leads to increases in fO2${{f}_{{{\text{O}}_{2}}}}$(normalized to a metastable garnet-free peridotite of the same composition at the same pressure and temperature) of ~1 order of magnitude from the low values of the spinel-lherzolite facies. These changes in normalized fO2${{f}_{{{\text{O}}_{2}}}}$reflect primarily the indirect effects of reactions involving aluminous phases in the peridotite that either produce or consume pyroxene with increasing pressure: Reactions that produce pyroxene with increasing pressure (e.g., forsterite + anorthite ⇆ Mg-Tschermak + diopside in plagioclase lherzolite) lead to dilution of Fe 3+ -bearing components in pyroxene and therefore to decreases in normalized fO2${{f}_{{{\text{O}}_{2}}}}$whereas pyroxene-consuming reactions (e.g., in the garnet stability field) lead initially to enrichment of Fe 3+ -bearing components in pyroxene and to increases in normalized fO2${{f}_{{{\text{O}}_{2}}}}$(although this is counteracted to some degree by progressive partitioning of Fe 3+ from the pyroxene into the garnet with increasing pressure). Thus, the variations in normalized fO2${{f}_{{{\text{O}}_{2}}}}$inferred from thermodynamic modeling of upper mantle peridotite of constant composition are primarily passive consequences of the same phase changes that produce the transitions from plagioclase → spinel → garnet lherzolite and the variations in Al content in pyroxenes within each of these facies. Because these variations are largely driven by phase changes among Al-rich phases, they are predicted to diminish with the decrease in bulk Al content that results from melt extraction from peridotite, and this is consistent with our calculations. Observed variations in FMQ-normalized fO2${{f}_{{{\text{O}}_{2}}}}$of primitive mantle-derived basalts and peridotites within and across different tectonic environments probably mostly reflect variations in the chemical compositions (e.g., Fe 3+ /Fe 2+ or bulk O 2 content) of their sources (e.g., produced by subduction of oxidizing fluids, sediments, and altered oceanic crust or of reducing organic material; by equilibration with graphite- or diamond-saturated fluids; or by the effects of partial melting). However, we conclude that in nature the predicted effects of pressure- and temperature-dependent phase equilibria on the fO2${{f}_{{{\text{O}}_{2}}}}$of peridotites of constant composition are likely to be superimposed on variations in fO2${{f}_{{{\text{O}}_{2}}}}$that reflect differences in the whole-rock Fe 3+ /Fe 2+ ratios of peridotites and therefore that the effects of phase equilibria should also be considered in efforts to understand observed variations in the oxygen fugacities of magmas and their mantle sources.
Contents
- Roebling Medal Paper
-
Requires Authentication UnlicensedThe effects of solid-solid phase equilibria on the oxygen fugacity of the upper mantleLicensedOctober 29, 2020
-
Requires Authentication UnlicensedMineral compositions and thermobarometry of basalts and boninites recovered during IODP Expedition 352 to the Bonin forearcLicensedOctober 29, 2020
-
Requires Authentication UnlicensedAn evolutionary system of mineralogy. Part II: Interstellar and solar nebula primary condensation mineralogy (>4.565 Ga)LicensedOctober 29, 2020
-
Requires Authentication UnlicensedSwelling capacity of mixed talc-like/stevensite layers in white/green clay infillings (“deweylite”/“garnierite”) from serpentine veins of faulted peridotites, New CaledoniaLicensedOctober 29, 2020
-
Requires Authentication UnlicensedExperimental observations of TiO2 activity in rutile-undersaturated meltsLicensedOctober 29, 2020
-
Requires Authentication UnlicensedDirect evidence for the source of uranium in the Baiyanghe deposit from accessory mineral alteration in the Yangzhuang granite porphyry, Xinjiang Province, northwest ChinaLicensedOctober 29, 2020
-
Requires Authentication UnlicensedExtraction of high-silica granites from an upper crustal magma reservoir: Insights from the Narusongduo magmatic system, Gangdese arcLicensedOctober 29, 2020
-
Open Access“EosFit-Pinc: A simple GUI for host-inclusion elastic thermobarometry” byAngel et al. (2017)—DiscussionOctober 29, 2020
-
Open Access“EosFit-Pinc: A simple GUI for host-inclusion elastic thermobarometry” —Reply to Zhong et alOctober 29, 2020
- Letter
-
Requires Authentication UnlicensedSynthesis and crystal structure of Pb-dominant tourmalineLicensedOctober 29, 2020
-
Requires Authentication UnlicensedElement loss to platinum capsules in high-temperature–pressure experimentsLicensedOctober 29, 2020
-
Publicly AvailableNew Mineral NamesOctober 29, 2020
- Book Review
-
October 29, 2020