Abstract
The increasing role of interfaces with decreasing scale is particularly important for small inclusions, grains or precipitates. In this work, we present a brief review of some of our recent TEM investigations of faceted singular interfaces and interface junctions in crystals. Direct observations by high-resolution electron microscopy allow us to relate the size, shape, and local interface structure to the behavior of nanoscale inclusions. The effect of facet junctions on equilibrium shapes of inclusions, on the structure of grain boundary grooves at surfaces and on grain-boundaries in anisotropic bicrystals are illustrated with examples from recent work by this group.
-
This work is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-ACO3-76SFOOO98.
References
[1] R.C. Pond: Phil. Mag. A 47, L49 (1983).10.1080/01418618308243119Search in Google Scholar
[2] R.C. Pond, in: Vol. 8, “Dislocations in Solids”, F.R.N. Nabarro (Ed.), North Holland, Amsterdam (1989) 1.Search in Google Scholar
[3] R. Hull, K.W. Carey, G.A. Reid: MRS 77 (1987) 455.10.1557/PROC-77-455Search in Google Scholar
[4] R.W. Balluffi, M. Rühle, A.P. Sutton: Mat. Sci. and Eng. 89 (1987) 1.10.1016/0025-5416(87)90244-8Search in Google Scholar
[5] J.E. Blendell, W.C. Carter, C.A. Handwerker: J. Am. Ceram. Soc. 82 (1999) 1889.10.1111/j.1151-2916.1999.tb02013.xSearch in Google Scholar
[6] C. Herring: Phys. Rev. 82 (1951) 87.10.1103/PhysRev.82.87Search in Google Scholar
[7] A.P. Sutton, R.W. Balluffi: Interfaces in Crystalline Materials, Oxford Science Publications, Oxford (1995).Search in Google Scholar
[8] J.C. Hamilton, D.J. Siegel, I. Daruka, F. Leonard: PRL 90 (2003) 246102.10.1103/PhysRevLett.90.246102Search in Google Scholar
[9] A.G. Khachaturyan: Theory of Structural Transformation in Solids, J. Wiley & Sons, New York (1983).Search in Google Scholar
[10] G. Wulff: Zeitschr. f. Kristallogr. 34 (1901) 449.Search in Google Scholar
[11] M.J. Kelley: Scripta Metall. Mater. 33 (1995) 1493.10.1016/0956-716X(95)00419-VSearch in Google Scholar
[12] G. Kalonji, J.W. Cahn: Phil. Mag. A 53 (1986) 521.10.1080/01418618608242850Search in Google Scholar
[13] R. Smallman: Modern Physical Metallurgy, Butterworths (1985).Search in Google Scholar
[14] U. Dahmen, S.Q. Xiao, S. Paciornik, E. Johnson, A. Johansen: Phys. Rev. Lett. 78 (1997) 471.10.1103/PhysRevLett.78.471Search in Google Scholar
[15] E. Johnson, A. Johansen, U. Dahmen, S.-J. Chen, T. Fujii: Mater. Sci. Forum 294 (1999) 115.Search in Google Scholar
[16] G.H. Campbell, D.K. Chan, D.L. Medlin, J.E. Angelo, C.B. Carter: Scripta Mater. 35 (1996) 837.10.1016/1359-6462(96)00220-5Search in Google Scholar
[17] U. Wolf, P. Gumbsch, H. Ichinose, H.F. Fischmeister: J. de Physique, Colloque C-1 (1990) 359.Search in Google Scholar
[18] F. Ernst, M.W. Finnis, D. Hofmann, T. Muschik, U. Schönberger, U. Wolf, M. Methfessel: Phys. Rev. Lett. 69 (1992) 620.10.1103/PhysRevLett.69.620Search in Google Scholar
[19] C. Schmidt, M.W. Finnis, F. Ernst, V. Vitek: Phil. Mag. A 77 (1998) 1161.10.1080/01418619808214246Search in Google Scholar
[20] H. Ichinose, Y. Ishida: Phil. Mag. A 52 (1985) 51.10.1080/01418618508237605Search in Google Scholar
[21] W. Krakow, D.A. Smith: Ultramicroscopy 22 (1987) 47.10.1016/0304-3991(87)90049-0Search in Google Scholar
[22] E.A. Marquis, J.C. Hamilton, D.L. Medlin, F. Léonard: Phys. Rev. Lett. 93 (2004) 156101.10.1103/PhysRevLett.93.156101Search in Google Scholar
[23] K. Merkle: Scripta Met. 23 (1989) 1487.10.1016/0036-9748(89)90115-4Search in Google Scholar
[24] T. Radetic, F. Lançon, U. Dahmen: Phys. Rev. Lett. 89 (2002) 085502.10.1103/PhysRevLett.89.085502Search in Google Scholar PubMed
[25] T. Radetic, U. Dahmen: Proc. MRS 695 (2002) 47.Search in Google Scholar
[26] F. Lançon, T. Radetic, U. Dahmen: Phys. Rev. B 69 (2004) 172102.10.1103/PhysRevB.69.172102Search in Google Scholar
© 2005 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- TEM observations on the behavior of facet junctions in interfaces and inclusions
- 1-dimensional lanthanide halide crystals encapsulated within single-walled carbon nanotubes – a brief review
- UHV chemical vapour deposition of silicon nanowires
- StripeTEM as a method of calculating chemical profiles across interfaces between solids or core-shell structures using electron energy-loss spectroscopic profiling
- Nanocluster interfaces and epitaxy: Ag on Si surfaces
- Imaging grain boundary segregation by electron diffractive imaging
- Interfaces in nanosize perovskite titanate ferroelectrics – microstructure and impact on selected properties
- Dynamic observation of nanometer-sized island formation on the SrTiO3(001) and (011) surfaces by in situ high-resolution transmission electron microscopy
- Modeling of misfit and threading dislocations in epitaxial heterostructures
- Grain growth under the influence of mechanical stresses
- Articles Applied
- Interfaces in nanostructured thin films and their influence on hardness
- The temporal evolution of the nanostructures of model Ni–Al–Cr and Ni–Al–Cr–Re superalloys
- Effect of TiO2–SiO2 distribution on bimodal microstructure of TiO2-doped α-Al2O3 ceramics
- Understanding nanostructured hard coatings – the importance of interfaces and interphases
- Analytical TEM study of microstructure – property relations in liquid-phase-sintered SiC with AlN–Y2O3 additives
- Evidence of a transient phase during the hydrolysis of calcium-deficient hydroxyapatite
- Zirconia/nickel interfaces in micro- and nanocomposites
- Notifications/Mitteilungen
- Personal/Personelles
- News/Aktuelles
- Conferences/Konferenzen
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- TEM observations on the behavior of facet junctions in interfaces and inclusions
- 1-dimensional lanthanide halide crystals encapsulated within single-walled carbon nanotubes – a brief review
- UHV chemical vapour deposition of silicon nanowires
- StripeTEM as a method of calculating chemical profiles across interfaces between solids or core-shell structures using electron energy-loss spectroscopic profiling
- Nanocluster interfaces and epitaxy: Ag on Si surfaces
- Imaging grain boundary segregation by electron diffractive imaging
- Interfaces in nanosize perovskite titanate ferroelectrics – microstructure and impact on selected properties
- Dynamic observation of nanometer-sized island formation on the SrTiO3(001) and (011) surfaces by in situ high-resolution transmission electron microscopy
- Modeling of misfit and threading dislocations in epitaxial heterostructures
- Grain growth under the influence of mechanical stresses
- Articles Applied
- Interfaces in nanostructured thin films and their influence on hardness
- The temporal evolution of the nanostructures of model Ni–Al–Cr and Ni–Al–Cr–Re superalloys
- Effect of TiO2–SiO2 distribution on bimodal microstructure of TiO2-doped α-Al2O3 ceramics
- Understanding nanostructured hard coatings – the importance of interfaces and interphases
- Analytical TEM study of microstructure – property relations in liquid-phase-sintered SiC with AlN–Y2O3 additives
- Evidence of a transient phase during the hydrolysis of calcium-deficient hydroxyapatite
- Zirconia/nickel interfaces in micro- and nanocomposites
- Notifications/Mitteilungen
- Personal/Personelles
- News/Aktuelles
- Conferences/Konferenzen