Home Technology Evolution of intergranular boundaries and phases in SiC and Si3N4 ceramics under high temperature deformation: Case studies by analytical TEM
Article
Licensed
Unlicensed Requires Authentication

Evolution of intergranular boundaries and phases in SiC and Si3N4 ceramics under high temperature deformation: Case studies by analytical TEM

  • Hui Gu EMAIL logo
Published/Copyright: December 30, 2021

Abstract

Intergranular boundaries, structures and phases are key microstructural components in advanced ceramic materials where dopants often play a leading role. This extended abstract summarizes the observations and analyses of the chemistry and structural evolutions that take place at intergranular boundaries and pockets during high-temperature deformation processes in Si-based ceramics. Quantitative analysis of these intergranular structures by analytical transmission electron microscopy is proved very important here to understand the dynamic development of the microstructure, which can shed light into the mechanism for plasticity and creep behaviors in high temperature structural ceramics such as SiC and Si3N4.


Prof. Dr. Hui Gu, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi road, Shanghai 200050, China, Tel.: +8621 5241 2318, Fax: +8621 5241 3122

Funding statement: I appreciate the supports from the “100 Talents” project of Chinese Academy of Sciences, the Shanghai Science and Technology Development Foundation via the grant No. 0519nm075, the Max-Planck Society via the partner group program and from the INCOR project of Japanese Science and Technology Corporation. I would like to thank Drs. Y. Shinoda, T. Nagano and F. Lofaj for bringing the materials and problems, Dr. M. Ceh and Mr. R. Huang for technical helps and Drs. F. Wakai and S. M. Wiederhorn for discussions

References

[1] H.-J. Kleebe, M.J. Hoffmann, M. Rühle: Z. Metallkd. 83 (1992) 610.Search in Google Scholar

[2] I. Tanaka, H.-J. Kleebe, M.K. Cinibulk, J. Bruley, D.R. Clarke, M. Rühle: J. Am. Ceram. Soc. 77 (1994) 911.10.1111/j.1151-2916.1994.tb07246.xSearch in Google Scholar

[3] H. Gu, X. Pan, R.M. Cannon, M. Rühle: J. Am. Ceram. Soc. 81 (1998) 3125.10.1111/j.1151-2916.1998.tb02747.xSearch in Google Scholar

[4] H. Ye, G. Rixecker, S. Haug, F. Aldinger: J. Eur. Ceram. Soc. 22 (2002) 2379.10.1016/S0955-2219(02)00006-7Search in Google Scholar

[5] H. Gu, T. Nagano, G.D. Zhan, M. Mitomo, F. Wakai: J. Am. Ceram. Soc. 86 (2003) 1753.10.1111/j.1151-2916.2003.tb03550.xSearch in Google Scholar

[6] P.F. Becher, E.Y. Sun, K.P. Plucknett, K.B. Alexander, C.H. Hsueh, H.T. Jin, S.B. Waters, C.G. Westmoreland, E.S. Kang, K. Horano, M. Brito: J. Am. Ceram. Soc. 81 (1998) 2821.10.1111/j.1151-2916.1998.tb02702.xSearch in Google Scholar

[7] H. Gu, F. Wakai: J. Mater. Synth. Proces. 6 (1998) 393.10.1023/A:1021876805121Search in Google Scholar

[8] H. Gu: Ultramicroscopy 76 (1999) 159;173.10.1016/S0304-3991(98)00083-7Search in Google Scholar

[9] H. Gu, R. M. Cannon, M. Rühle: J. Mater. Res. 13 (1998) 376.10.1557/JMR.1998.0050Search in Google Scholar

[10] H. Gu: J. Am. Ceram. Soc. 85 (2002) 33.10.1111/j.1151-2916.2002.tb00034.xSearch in Google Scholar

[11] H. Gu, R. M. Cannon, H. J. Seifert, M. J. Hoffmann, I. Tanaka: J. Am. Ceram. Soc. 85 (2002) 25.10.1111/j.1151-2916.2002.tb00033.xSearch in Google Scholar

[12] D.B. Williams, C. Barry Carter: Transmission Electron Microscopy: IV Spectrometry, Plenum Press-New York (1996).10.1007/978-1-4757-2519-3Search in Google Scholar

[13] H. Müllejans, J. Bruley: Ultramicroscopy 53 (1994) 351.10.1016/0304-3991(94)90048-5Search in Google Scholar

[14] U. Alber, H. Müllejans, M. Rühle: Acta Mater. 47 (1999) 4047.10.1016/S1359-6454(99)00265-7Search in Google Scholar

[15] M. Mitomo, Y.-W. Kim, H. Hirotsuro: J. Mater. Res. 11 (1996) 1601.10.1557/JMR.1996.0200Search in Google Scholar

[16] Y. Shinoda, T. Nagano, H. Gu, F. Wakai: J. Am. Ceram. Soc. 82 (1999) 2916.10.1111/j.1151-2916.1999.tb02178.xSearch in Google Scholar

[17] T. Nagano, H. Gu, K. Kaneko, G.D. Zhan, M. Mitomo: J. Am. Ceram. Soc. 84 (2001) 2045.10.1111/j.1151-2916.2001.tb00956.xSearch in Google Scholar

[18] T. Nagano, H. Gu, G.D. Zhan, M. Mitomo: J. Mater. Sci. 37 (2002) 4419.10.1023/A:1020629308663Search in Google Scholar

[19] H. Gu, Y. Shinoda, F. Wakai: J. Am. Ceram. Soc. 82 (1999) 469.10.1111/j.1551-2916.1999.tb20089.xSearch in Google Scholar

[20] H. Gu, Y. Shinoda: Interface Sci. 8 (2000) 269.10.1023/A:1008720404554Search in Google Scholar

[21] F. Lofaj, A. Okada, H. Usami, H. Kawamoto: J. Am. Ceram. Soc. 82 (1999) 1009.10.1111/j.1151-2916.1999.tb01867.xSearch in Google Scholar

[22] F. Lofaj, A. Okada, Y. Ikeda, H. Kawamoto: Key Eng. Mater. 171–174 (2000) 747.Search in Google Scholar

[23] F. Lofaj, S.M. Wiederhorn, G.G. Long, B.J. Hockey, P.R. Jemian, L. Browder, J. Andreason, U. Täffner: J. Eur. Ceram. Soc. 22 (2002) 2479.10.1016/S0955-2219(02)00106-1Search in Google Scholar

[24] F. Lofaj, H. Gu, A. Okada, H. Kawamoto: Mater. Sci. Forum 294–296 (1999) 621.Search in Google Scholar

Received: 2003-12-11
Accepted: 2004-02-10
Published Online: 2021-12-30

© 2004 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles BBasic
  5. The distribution of internal interfaces in polycrystals
  6. Analysis of grain boundary network topology using grain boundary wetting
  7. Kinematics of connected grain boundaries in 2D
  8. On the first steps of grain boundary dislocation stress relaxations in copper
  9. Grain boundary mobility – a brief review
  10. In situ TEM observations of moving interfaces during discontinuous precipitation reaction in Al-22 at.% Zn alloy
  11. Stress-induced migration of tilt and twist grain boundaries
  12. Efficiency of drag mechanisms for inhibition of grain growth in nanocrystalline materials
  13. A model for simulating the motion of line defects in twin boundaries in HCP metals
  14. Phase transitions: an alternative for stress accommodation in CMR manganate films
  15. Thermodynamic and kinetic influences on the morphology of moving interfaces during solid state reactions
  16. Interfacial reaction mechanisms and the structure of moving heterophase boundaries during pyrochlore- and spinel-forming solid state reactions
  17. Bifurcation of the Kirkendall plane and patterning in reactive diffusion
  18. Articles AApplied
  19. Wetting and strength in the tin – silver – titanium/sapphire system
  20. Intergranular films in metal-ceramic composites and the promotion of metal particle occlusion
  21. Evolution of intergranular boundaries and phases in SiC and Si3N4 ceramics under high temperature deformation: Case studies by analytical TEM
  22. Atomic structure and dynamics of massive transformation interfaces in TiAl alloy
  23. Notifications/Mitteilungen
  24. Personal/Personelles
  25. Books/Bücher
  26. Conferences/Konferenzen
  27. Events/Veranstaltungen
Downloaded on 1.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2004-0058/html
Scroll to top button