Abstract
Intergranular boundaries, structures and phases are key microstructural components in advanced ceramic materials where dopants often play a leading role. This extended abstract summarizes the observations and analyses of the chemistry and structural evolutions that take place at intergranular boundaries and pockets during high-temperature deformation processes in Si-based ceramics. Quantitative analysis of these intergranular structures by analytical transmission electron microscopy is proved very important here to understand the dynamic development of the microstructure, which can shed light into the mechanism for plasticity and creep behaviors in high temperature structural ceramics such as SiC and Si3N4.
Funding statement: I appreciate the supports from the “100 Talents” project of Chinese Academy of Sciences, the Shanghai Science and Technology Development Foundation via the grant No. 0519nm075, the Max-Planck Society via the partner group program and from the INCOR project of Japanese Science and Technology Corporation. I would like to thank Drs. Y. Shinoda, T. Nagano and F. Lofaj for bringing the materials and problems, Dr. M. Ceh and Mr. R. Huang for technical helps and Drs. F. Wakai and S. M. Wiederhorn for discussions
References
[1] H.-J. Kleebe, M.J. Hoffmann, M. Rühle: Z. Metallkd. 83 (1992) 610.Search in Google Scholar
[2] I. Tanaka, H.-J. Kleebe, M.K. Cinibulk, J. Bruley, D.R. Clarke, M. Rühle: J. Am. Ceram. Soc. 77 (1994) 911.10.1111/j.1151-2916.1994.tb07246.xSearch in Google Scholar
[3] H. Gu, X. Pan, R.M. Cannon, M. Rühle: J. Am. Ceram. Soc. 81 (1998) 3125.10.1111/j.1151-2916.1998.tb02747.xSearch in Google Scholar
[4] H. Ye, G. Rixecker, S. Haug, F. Aldinger: J. Eur. Ceram. Soc. 22 (2002) 2379.10.1016/S0955-2219(02)00006-7Search in Google Scholar
[5] H. Gu, T. Nagano, G.D. Zhan, M. Mitomo, F. Wakai: J. Am. Ceram. Soc. 86 (2003) 1753.10.1111/j.1151-2916.2003.tb03550.xSearch in Google Scholar
[6] P.F. Becher, E.Y. Sun, K.P. Plucknett, K.B. Alexander, C.H. Hsueh, H.T. Jin, S.B. Waters, C.G. Westmoreland, E.S. Kang, K. Horano, M. Brito: J. Am. Ceram. Soc. 81 (1998) 2821.10.1111/j.1151-2916.1998.tb02702.xSearch in Google Scholar
[7] H. Gu, F. Wakai: J. Mater. Synth. Proces. 6 (1998) 393.10.1023/A:1021876805121Search in Google Scholar
[8] H. Gu: Ultramicroscopy 76 (1999) 159;173.10.1016/S0304-3991(98)00083-7Search in Google Scholar
[9] H. Gu, R. M. Cannon, M. Rühle: J. Mater. Res. 13 (1998) 376.10.1557/JMR.1998.0050Search in Google Scholar
[10] H. Gu: J. Am. Ceram. Soc. 85 (2002) 33.10.1111/j.1151-2916.2002.tb00034.xSearch in Google Scholar
[11] H. Gu, R. M. Cannon, H. J. Seifert, M. J. Hoffmann, I. Tanaka: J. Am. Ceram. Soc. 85 (2002) 25.10.1111/j.1151-2916.2002.tb00033.xSearch in Google Scholar
[12] D.B. Williams, C. Barry Carter: Transmission Electron Microscopy: IV Spectrometry, Plenum Press-New York (1996).10.1007/978-1-4757-2519-3Search in Google Scholar
[13] H. Müllejans, J. Bruley: Ultramicroscopy 53 (1994) 351.10.1016/0304-3991(94)90048-5Search in Google Scholar
[14] U. Alber, H. Müllejans, M. Rühle: Acta Mater. 47 (1999) 4047.10.1016/S1359-6454(99)00265-7Search in Google Scholar
[15] M. Mitomo, Y.-W. Kim, H. Hirotsuro: J. Mater. Res. 11 (1996) 1601.10.1557/JMR.1996.0200Search in Google Scholar
[16] Y. Shinoda, T. Nagano, H. Gu, F. Wakai: J. Am. Ceram. Soc. 82 (1999) 2916.10.1111/j.1151-2916.1999.tb02178.xSearch in Google Scholar
[17] T. Nagano, H. Gu, K. Kaneko, G.D. Zhan, M. Mitomo: J. Am. Ceram. Soc. 84 (2001) 2045.10.1111/j.1151-2916.2001.tb00956.xSearch in Google Scholar
[18] T. Nagano, H. Gu, G.D. Zhan, M. Mitomo: J. Mater. Sci. 37 (2002) 4419.10.1023/A:1020629308663Search in Google Scholar
[19] H. Gu, Y. Shinoda, F. Wakai: J. Am. Ceram. Soc. 82 (1999) 469.10.1111/j.1551-2916.1999.tb20089.xSearch in Google Scholar
[20] H. Gu, Y. Shinoda: Interface Sci. 8 (2000) 269.10.1023/A:1008720404554Search in Google Scholar
[21] F. Lofaj, A. Okada, H. Usami, H. Kawamoto: J. Am. Ceram. Soc. 82 (1999) 1009.10.1111/j.1151-2916.1999.tb01867.xSearch in Google Scholar
[22] F. Lofaj, A. Okada, Y. Ikeda, H. Kawamoto: Key Eng. Mater. 171–174 (2000) 747.Search in Google Scholar
[23] F. Lofaj, S.M. Wiederhorn, G.G. Long, B.J. Hockey, P.R. Jemian, L. Browder, J. Andreason, U. Täffner: J. Eur. Ceram. Soc. 22 (2002) 2479.10.1016/S0955-2219(02)00106-1Search in Google Scholar
[24] F. Lofaj, H. Gu, A. Okada, H. Kawamoto: Mater. Sci. Forum 294–296 (1999) 621.Search in Google Scholar
© 2004 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles BBasic
- The distribution of internal interfaces in polycrystals
- Analysis of grain boundary network topology using grain boundary wetting
- Kinematics of connected grain boundaries in 2D
- On the first steps of grain boundary dislocation stress relaxations in copper
- Grain boundary mobility – a brief review
- In situ TEM observations of moving interfaces during discontinuous precipitation reaction in Al-22 at.% Zn alloy
- Stress-induced migration of tilt and twist grain boundaries
- Efficiency of drag mechanisms for inhibition of grain growth in nanocrystalline materials
- A model for simulating the motion of line defects in twin boundaries in HCP metals
- Phase transitions: an alternative for stress accommodation in CMR manganate films
- Thermodynamic and kinetic influences on the morphology of moving interfaces during solid state reactions
- Interfacial reaction mechanisms and the structure of moving heterophase boundaries during pyrochlore- and spinel-forming solid state reactions
- Bifurcation of the Kirkendall plane and patterning in reactive diffusion
- Articles AApplied
- Wetting and strength in the tin – silver – titanium/sapphire system
- Intergranular films in metal-ceramic composites and the promotion of metal particle occlusion
- Evolution of intergranular boundaries and phases in SiC and Si3N4 ceramics under high temperature deformation: Case studies by analytical TEM
- Atomic structure and dynamics of massive transformation interfaces in TiAl alloy
- Notifications/Mitteilungen
- Personal/Personelles
- Books/Bücher
- Conferences/Konferenzen
- Events/Veranstaltungen
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles BBasic
- The distribution of internal interfaces in polycrystals
- Analysis of grain boundary network topology using grain boundary wetting
- Kinematics of connected grain boundaries in 2D
- On the first steps of grain boundary dislocation stress relaxations in copper
- Grain boundary mobility – a brief review
- In situ TEM observations of moving interfaces during discontinuous precipitation reaction in Al-22 at.% Zn alloy
- Stress-induced migration of tilt and twist grain boundaries
- Efficiency of drag mechanisms for inhibition of grain growth in nanocrystalline materials
- A model for simulating the motion of line defects in twin boundaries in HCP metals
- Phase transitions: an alternative for stress accommodation in CMR manganate films
- Thermodynamic and kinetic influences on the morphology of moving interfaces during solid state reactions
- Interfacial reaction mechanisms and the structure of moving heterophase boundaries during pyrochlore- and spinel-forming solid state reactions
- Bifurcation of the Kirkendall plane and patterning in reactive diffusion
- Articles AApplied
- Wetting and strength in the tin – silver – titanium/sapphire system
- Intergranular films in metal-ceramic composites and the promotion of metal particle occlusion
- Evolution of intergranular boundaries and phases in SiC and Si3N4 ceramics under high temperature deformation: Case studies by analytical TEM
- Atomic structure and dynamics of massive transformation interfaces in TiAl alloy
- Notifications/Mitteilungen
- Personal/Personelles
- Books/Bücher
- Conferences/Konferenzen
- Events/Veranstaltungen