Abstract
The excess volume and density of liquid Al –Sr alloys at 1323, 1423 and 1523 K have been evaluated from the enthalpy of mixing and the excess entropy, using the solution model based on the free-volume theory. It has been found that the excess volume of liquid Al –Sr alloys exhibits a minimum at xSr ≈ 0.31, well consistent with the thermodynamic results that both the enthalpy of mixing and excess entropy exhibit minima at xSr ≈ 0.35. By contrast, the density of liquid alloys shows a maximum at xSr ≈ 0.31. The excess volume and density, in combination with the thermodynamic properties and the phase diagram, suggest the presence of complexes of the type Al2Sr in liquid Al –Sr alloys. The excess volume and the density of liquid alloys slightly decrease with increasing temperature.
The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 50071028) and the Shandong Natural Science Foundation of China (No. Z2001F02).
References
1 Iida, T.; Guthrie, R.I.L.: The Physical Properties of Liquid Metals, Clarendon Press, Oxford (1993).Suche in Google Scholar
2 Scatchard, G.: Trans. Faraday Soc. 33 (1937) 160.10.1039/tf9373300160Suche in Google Scholar
3 Kleppa, O.J.: J. Phys. Chem. 64 (1960) 1542.10.1021/j100839a049Suche in Google Scholar
4 Kleppa, O.J.; Kaplan, M.; Thalmayer, C.E.: J. Phys. Chem. 65 (1961) 843.10.1021/j100823a031Suche in Google Scholar
5 Predel B.; Eman, A.: Mater. Sci. Eng. 4 (1969) 287.10.1016/0025-5416(69)90005-6Suche in Google Scholar
6 Crawley, A.F.: Int. Met. Rev. 19 (1974) 32.10.1179/095066074790137015Suche in Google Scholar
7 Marcus, Y.: Introduction to Liquid State Chemistry, Chapter 8, John Wiley & Sons, London (1977).Suche in Google Scholar
8 Kubaschewski, O.; Alcock, C.B.: Metallurgical Thermochemistry, Pergamon Press, Oxford (1979) 55.Suche in Google Scholar
9 Tanaka, T.; Gokcen, N.A.; Morita, Z.I.; Iida, T.: Z. Metallkd. 84 (1993) 192.Suche in Google Scholar
10 Sommer, F.; Lee, J.J.; Predel, B.: Z. Metallkd. 74 (1983) 100.Suche in Google Scholar
11 Alcock, C.B.; Itkin, V.P.: Bull. Alloy Phase Diagr. 10 (1989) 624.10.1007/BF02877629Suche in Google Scholar
12 Srikanth, S.; Jacob, K.T.: Z. Metallkd. 82 (1991) 675.Suche in Google Scholar
13 Lupis, C.H.P.; Elliott, J.F.: Acta Metall. 15 (1967) 265.10.1016/0001-6160(67)90202-7Suche in Google Scholar
14 Turnbull, D.; Cohen, M.H.: J. Chem. Phys. 34 (1961) 120.10.1063/1.1731549Suche in Google Scholar
15 Gokcen, N.A.: Statistical Thermodynamics of Alloys, Plenum Press, New York (1986) 81.10.1007/978-1-4684-5053-8_4Suche in Google Scholar
16 Tanaka, T.; Gokcen, N.A.; Morita, Z.I.: Z. Metallkd. 81 (1990) 49.Suche in Google Scholar
17 Massalski, T.R.; Murray, J.L.; Bennet, L.H.; Baker, H.: Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio (1986).Suche in Google Scholar
18 Bruzzone, G.; Merlo, F.: J. Less-Common Metals 39 (1975) 1.10.1016/0022-5088(75)90212-XSuche in Google Scholar
19 Fornasini, M.L.; Merlo, F.: Acta Crystallogr. B 32 (1976) 1864.10.1107/S0567740876006547Suche in Google Scholar
20 Closset, B.; Dugas, H.; Perkguleryuz, M.; Gruzleski, J.E.: Metall. Trans. A 17 (1986) 1250.10.1007/BF02665326Suche in Google Scholar
21 Fornasini, M.L.: Acta Crystallogr. C 39 (1983) 943.10.1107/S0108270183006940Suche in Google Scholar
22 Esin, Y.O.; Litovski, V.V.; Demin, S.E.; Petrushevski, M.S.: Russ. J. Phys. Chem. 59 (1985) 446.Suche in Google Scholar
23 Jordan, A.S.: Metall. Trans. 1 (1970) 239.10.1007/BF02819267Suche in Google Scholar
© 2002 Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Editorial
- 2nd European Symposium on Nanomechanical Testing
- Articles/Aufsätze
- Finite element simulation of spherical indentation in the elastic –plastic transition
- Continuous FEM simulation of the nanoindentation
- Extracting hardness and Young’s modulus from load – displacement curves
- Nanoindentation around Vickers microindentation in MgO (100) crystal
- Development of a standard on hardness and Young’s modulus testing of thin coatings by nanoindentation
- Phase formation and reaction kinetics in M– In systems (M = Pt, Pd, Mn)
- Phase formation and reaction kinetics in M–Sn systems (M = Zr, Hf, Nb, Ta, Mo)
- Evaluation of the excess volume and density of liquid Al –Sr alloys
- Strength differential effect in SiCp reinforced Al composites
- Processing map for hot working of hot-rolled Mg-11.5Li-1.5Al-0.15Zr alloy
- Effect of modes of rolling on evolution of the texture in pure copper and some copper-base alloys
- Effect of modes of rolling on evolution of the texture in pure copper and some copper-base alloys
- Notifications/Mitteilungen
- Personal/Personelles
- DGM Training/DGM Fortbildung
- Conferences/Konferenzen
Artikel in diesem Heft
- Contents
- Editorial
- 2nd European Symposium on Nanomechanical Testing
- Articles/Aufsätze
- Finite element simulation of spherical indentation in the elastic –plastic transition
- Continuous FEM simulation of the nanoindentation
- Extracting hardness and Young’s modulus from load – displacement curves
- Nanoindentation around Vickers microindentation in MgO (100) crystal
- Development of a standard on hardness and Young’s modulus testing of thin coatings by nanoindentation
- Phase formation and reaction kinetics in M– In systems (M = Pt, Pd, Mn)
- Phase formation and reaction kinetics in M–Sn systems (M = Zr, Hf, Nb, Ta, Mo)
- Evaluation of the excess volume and density of liquid Al –Sr alloys
- Strength differential effect in SiCp reinforced Al composites
- Processing map for hot working of hot-rolled Mg-11.5Li-1.5Al-0.15Zr alloy
- Effect of modes of rolling on evolution of the texture in pure copper and some copper-base alloys
- Effect of modes of rolling on evolution of the texture in pure copper and some copper-base alloys
- Notifications/Mitteilungen
- Personal/Personelles
- DGM Training/DGM Fortbildung
- Conferences/Konferenzen