Creep Crack Growth and Fractal Dimension of the Grain-boundary Fracture in Austenitic 21Cr–4Ni–9Mn Steel
-
Manabu Tanaka
Abstract
The creep crack growth and the fractal dimension of grain-boundary fracture (Df or D̄f ) were examined using surface notched specimens with different fractal dimensions of the grain boundaries (Dgb) in austenitic 21Cr–4Ni–9Mn steel. The value of Df estimated in the scale range larger than about one grain-boundary length decreased with crack growth and with increasing bulk stress (gross section stress), while the value of Df was higher in the specimen with higher Dgb value. The value of D̄f estimated in the scale range smaller than about one grain-boundary length was close to the value of Dgb in each specimen and did not change with crack growth and with the bulk stress (gross section stress). The growth rate of creep crack was lower and the threshold stress intensity factor for crack growth was higher in the specimen with the higher Dgb value.
Abstract
Das Wachstum von Kriechrissen und die Fraktaldimension des Korngrenzenbruchs (Df oder D̄f ) wurden an oberflächlich gekerbten Proben mit unterschiedlichen Fraktal-dimensionen der Korngrenzen (Dgb) im austenitischen 21Cr–4Ni–9Mn Stahl untersucht. Der Df-Wert, der im Meßbereich größer als ungefähr eine Korngrenzlänge abgeschätzt wurde, nahm mit dem Rißwachstum und mit der Zunahme der Großabschnittspannung (bulk stress) ab, obwohl der Df-Wert höher in der Probe mit höherem Dgb-Wert war. Der D̄f-Wert, der im Meßbereich kleiner als ungefähr eine Korngrenzlänge äbgeschätzt wurde, war in der Nähe des Dgb-Wertes in der einzelnen Probe und veränderte sich nicht mit dem Rißwachstum und mit der Großabschnittspannung (bulk stress). Die Wachstumsgeschwindigkeit des Kriechrisses war niedriger und die Schwellspannungsintensität des Rißwachstums war höher in der Probe mit höherem Dgb-Wert.
Literature
1 Mandelbrot, B.B.: The Fractal Geometry of Nature, translated by H. Hironaka, Nikkei Science, Tokyo (1980).Suche in Google Scholar
2 Mandelbrot, B.B.; Passoja, D.E.; Paullay, A.J.: Nature 308 (1984) 721 – 722.10.1038/308721a0Suche in Google Scholar
3 Takayasu, H.: Fractals in the Physical Sciences, Manchester University Press, Manchester, New York (1990).Suche in Google Scholar
4 Hornbogen, E.: Z. Metallkd. 78 (1987) 622 – 625.Suche in Google Scholar
5 Hornbogen, E.: Inter. Mater. Rev. 34 (1989) 277 – 296.10.1179/imr.1989.34.1.277Suche in Google Scholar
6 Streitenberger, P.; Förster, D.; Kolbe, G.; Veit, P.: Scripta metall. mater. 33 (1995) 541 – 546.10.1016/0956-716X(95)00265-WSuche in Google Scholar
7 Milman, V.Y.; Stelmashenko, N.A.; Blumenfeld, R.: Progress in Mater. Sc. 38 (1994) 425 – 474.10.1016/0079-6425(94)90006-XSuche in Google Scholar
8 Bouchaud, E.: in: F. Family, P. Meakin, B. Sapoval and R. Wood (eds.), Fractal Aspect of Materials, MRS, Pittsburgh, (1995) 83 – 94.Suche in Google Scholar
9 Drury, W.J.; Gokhale, A.M.: ASTM STP 1203, ASTM, Philadelphia (1993) 58 – 70.Suche in Google Scholar
10 Tanaka, M.: Z. Metallkd. 84 (1993) 697 – 701.Suche in Google Scholar
11 Tanaka, M.: J. Mater. Sc., to be published.Suche in Google Scholar
12 Pande, C.S.; Richards, L.E.; Louat, N.; Dempsey, B.D.; Schwoeble, A.J.: Acta metall. 35 (1987) 1633 – 1637.10.1016/0001-6160(87)90110-6Suche in Google Scholar
13 Banerji, K.: Metall. Trans. A 19A (1988) 961 – 971.10.1007/BF02628381Suche in Google Scholar
14 Ishimura, S.; Ishimura, S.: Fractal Mathematics, Tokyo Tosho, Tokyo (1990).Suche in Google Scholar
15 Tanaka, M.; Iizuka, H.; Ashihara, F.: J. Mater. Sc. 23 (1988) 3827 – 3832.10.1007/BF01106799Suche in Google Scholar
16 Gokhale, A.M.; Drury,W.J.; Mishra, S.: ASTM STP 1203, ASTM, Philadelphia (1993) 3 – 22.Suche in Google Scholar
17 Underwood, E.E.; Banerji, K.: Mater. Sc. Engn. 80 (1986) 1 – 14.10.1016/0025-5416(86)90297-1Suche in Google Scholar
18 Dauskardt, R.H.; Haubensak, F.; Ritchie, O.: Acta metall. mater. 38 (1990) 143 – 159.10.1016/0956-7151(90)90043-GSuche in Google Scholar
19 Tanaka, M.; Miyagawa, O.; Sakaki, T.; Fujishiro, D.: J. Iron and Steel Inst. Japan 65 (1979) 939 – 948.10.2355/tetsutohagane1955.65.7_939Suche in Google Scholar
20 Tanaka, M.; Miyagawa, O.; Sakaki, T.; Iizuka, H.; Ashihara, F.; Fujishiro, D.: J. Mater. Sc. 23 (1988) 621 – 628.10.1007/BF01174696Suche in Google Scholar
21 Tanaka, M.: J. Mater. Sc. 27 (1992) 4717 – 4725.10.1007/BF01166012Suche in Google Scholar
22 Tanaka, M.; Iizuka, H.: Z. Metallkd. 82 (1991) 442 – 447.Suche in Google Scholar
23 Kiuchi, A.; Aoki, M.; Kobayashi, M.; Ikeda, K.: J. Iron and Steel Inst. Japan 68 (1982) 1830 – 1838.10.2355/tetsutohagane1955.68.13_1830Suche in Google Scholar
24 Kitagawa, H.; Yuuki, R.: Trans. Japan Soc. Mech. Engn. 41 (1975) 1641 – 1649.10.1299/kikai1938.41.1641Suche in Google Scholar
25 Ishida, M.: Trans. Japan Soc. Mech. Engn. 45 (1979) 306 – 317.10.1299/kikaia.45.306Suche in Google Scholar
26 Suresh, S.: Metall. Trans. A 14A (1983) 2375 – 2385.10.1007/BF02663313Suche in Google Scholar
27 Crossman, F.W.; Ashby, M.F.: Acta metall. 23 (1975) 425 – 440.10.1016/0001-6160(75)90082-6Suche in Google Scholar
28 Langdon, T.G.; Vastava, R.B.: ASTM STP 765, ASTM, Philadelphia (1982) 435 – 451.Suche in Google Scholar
29 Ashby, M.F.; Raj, R.; Gifkins, R.C.: Scripta metall. 4 (1970) 737 – 741.10.1016/0036-9748(70)90216-4Suche in Google Scholar
30 Raj, R.; Ashby, M.F.: Metall. Trans. 2 (1971) 1113 – 1127.10.1007/BF02664244Suche in Google Scholar
31 Ohtani, R.; Itoh, T.: J. Soc. Mater. Sc. Japan 20 (1971) 864 – 871.10.2472/jsms.20.864Suche in Google Scholar
32 Ohji, K.; Ogura, K.; Nakano, T.: Trans. Japan Soc. Mech. Engn. 39 (1973) 822 – 832.10.1299/kikai1938.39.822Suche in Google Scholar
33 Ohnami, M.; Umeda, K.; Awaya, Y.; Takeda, M.: Trans. Japan Soc. Mech. Engn. 42 (1976) 335 – 342.10.1299/kikai1938.42.335Suche in Google Scholar
34 Tanaka, M.; Sakaki, T.; Fujita, H.: Trans. Iron and Steel Inst. Japan 22 (1982) 365 – 370.10.2355/isijinternational1966.22.365Suche in Google Scholar
35 Tanaka, M.: J. Mater. Sc. 28 (1993) 5753 – 5758.10.1007/BF00365177Suche in Google Scholar
© 1997 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Aufsätze
- Segregation and Precipitation during Solidification of Titanium and Nitrogen Containing Iron Alloys
- Microtexture and Orientation Relations Analysis in Surroundings of Shear Bands in Monocrystalline Copper
- Correlation Between Microstructure and Creep Behavior of the High-Temperature Ti Alloy IMI 834
- The Influence of Cold Working and Recrystallization on the Homogenization of As-cast Cu-50 wt.% Ni Alloy
- Casting of Particulate Al-base Composites
- Creep Crack Growth and Fractal Dimension of the Grain-boundary Fracture in Austenitic 21Cr–4Ni–9Mn Steel
- The Energy Release Rate of Nonlinear Double Cantilever Beam Specimens
- Thermodynamic Properties of Solid Aluminium– Iron Alloys
- An Assessment of Thermodynamic Equilibria in the Ag–Al–Cu–Mg Quaternary System in Relation to Precipitation Reactions
- Experimental Study of Phase Equilibria in the Fe–Cr –Mn System in the Temperature Range 1073 to 1373 K
- Thermodynamic Properties and Phase Equilibria in the Ca–Sb System
- Phase Equilibria in the Ti-rich Corner of the Ti –Si –Al System
- Mitteilungen der Deutschen Gesellschaft für Materialkunde e.V.
- Personen
- Fortbildung
- Terminkalender
Artikel in diesem Heft
- Frontmatter
- Aufsätze
- Segregation and Precipitation during Solidification of Titanium and Nitrogen Containing Iron Alloys
- Microtexture and Orientation Relations Analysis in Surroundings of Shear Bands in Monocrystalline Copper
- Correlation Between Microstructure and Creep Behavior of the High-Temperature Ti Alloy IMI 834
- The Influence of Cold Working and Recrystallization on the Homogenization of As-cast Cu-50 wt.% Ni Alloy
- Casting of Particulate Al-base Composites
- Creep Crack Growth and Fractal Dimension of the Grain-boundary Fracture in Austenitic 21Cr–4Ni–9Mn Steel
- The Energy Release Rate of Nonlinear Double Cantilever Beam Specimens
- Thermodynamic Properties of Solid Aluminium– Iron Alloys
- An Assessment of Thermodynamic Equilibria in the Ag–Al–Cu–Mg Quaternary System in Relation to Precipitation Reactions
- Experimental Study of Phase Equilibria in the Fe–Cr –Mn System in the Temperature Range 1073 to 1373 K
- Thermodynamic Properties and Phase Equilibria in the Ca–Sb System
- Phase Equilibria in the Ti-rich Corner of the Ti –Si –Al System
- Mitteilungen der Deutschen Gesellschaft für Materialkunde e.V.
- Personen
- Fortbildung
- Terminkalender