A New Approach to Simulation of Die Flow which Incorporates the Extruder and Rotating Screw Tips in the Analysis
-
A. Lawal
Abstract
The traditional method of mathematical modeling of the die flows treats the die as a stand alone tool which is independent of the extrusion conditions which feed the polymer melt into the die. Here, we demonstrate that especially under the conditions where a breaker plate is not used the flow and the deformation which occur in the die are dependent on the prevailing velocity and the stress conditions of the fluid at the extruder which feeds the die. A finite element method based technique is used to solve the conservation equations using a mesh which covers both the die and the rotating conical screw tips of the extruder. The presented methodologies provide a more realistic representation of the thermo-mechanical history experienced by the polymer melt or structured fluids including emulsions or suspensions in the die and thus provide better tools for die design and process optimization. The results also suggest that significant improvements in die design and hence die performance could ensue by using the geometry of the screw tips, the distance between the screw tips and the die and the rotational screw speed as additional parameters for design and optimization.
© 1997, Carl Hanser Verlag, Munich
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Third in a Series: Pioneers of Polymer Processing: Charles Goodyear
- Screw Extrusion/Mixing
- Chaotic Features of Flow in Polymer Processing Equipment-Relevance to Distributive Mixing
- Influence of Design on Mixing Efficiency in a Variable Intermeshing Clearance Mixer
- Simulation of Non-Isothermal Flow in a Modular Buss Kneader and Comparison with Experiment
- Rheological Behaviour of LLDPE/LDPE Blends under Elongational Deformation
- Effect of Compounding Conditions on Mechanical Properties of Glass Fiber-Reinforced Polyamide-6
- Die Extrusion
- A New Approach to Simulation of Die Flow which Incorporates the Extruder and Rotating Screw Tips in the Analysis
- New Aspects Concerning the Design of Coathanger Dies
- Film
- On-Line Birefringence Measurement in Film Blowing of a Linear Low Density Polyethylene
- Brittle Melt Rupture Phenomena in Polymer Processing
- Moulding
- Injection Molding of LDPE/BaSO4 Blends
- An Experimental Study of Rotational Molding of Polypropylene/Polyethylene Copolymers
- Determination of the Inter-Relationships Between Processing Conditions and Properties of an Injection Molded Silicone Ring Using an Experimental Design
- Numerical Simulation of the Flow and Fiber Orientation in Reinforced Thermoplastic Injection Molded Products
- Wide-Angle X-Ray, Densitometric and Microscopical Studies on Injection Molded Polypropylene Disks
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Third in a Series: Pioneers of Polymer Processing: Charles Goodyear
- Screw Extrusion/Mixing
- Chaotic Features of Flow in Polymer Processing Equipment-Relevance to Distributive Mixing
- Influence of Design on Mixing Efficiency in a Variable Intermeshing Clearance Mixer
- Simulation of Non-Isothermal Flow in a Modular Buss Kneader and Comparison with Experiment
- Rheological Behaviour of LLDPE/LDPE Blends under Elongational Deformation
- Effect of Compounding Conditions on Mechanical Properties of Glass Fiber-Reinforced Polyamide-6
- Die Extrusion
- A New Approach to Simulation of Die Flow which Incorporates the Extruder and Rotating Screw Tips in the Analysis
- New Aspects Concerning the Design of Coathanger Dies
- Film
- On-Line Birefringence Measurement in Film Blowing of a Linear Low Density Polyethylene
- Brittle Melt Rupture Phenomena in Polymer Processing
- Moulding
- Injection Molding of LDPE/BaSO4 Blends
- An Experimental Study of Rotational Molding of Polypropylene/Polyethylene Copolymers
- Determination of the Inter-Relationships Between Processing Conditions and Properties of an Injection Molded Silicone Ring Using an Experimental Design
- Numerical Simulation of the Flow and Fiber Orientation in Reinforced Thermoplastic Injection Molded Products
- Wide-Angle X-Ray, Densitometric and Microscopical Studies on Injection Molded Polypropylene Disks