Morphological Changes of a Polymer Blend into a Twin-Screw Extruder
-
A. De Loor
, P. Cassagnau , A. Michel and B. Vergnes
Abstract
The dispersion of an elastomeric phase (blend of two miscible copolymers: ethylene-vinyl acetate and ethylene-methyl acrylate) in a polypropylene matrix along a corotating twin-screw extruder was studied experimentally. A sliding barrel allowed a direct access to the screws and thus permitted a rapid cooling and sampling. The dispersion of the elastomeric phase was controlled by scanning electron microscopy and the size distribution was obtained by image analysis. The particle size distribution was measured at different locations along the screws in order to quantify the evolution of the morphology. Complementary studies were carried out on a pre-shearing rheometer (Rheoplast) in order to study the influence of the mechanical treatment upon particle size. The dispersion of the elastomeric phase was observed at the capillary exit by the above mentioned techniques. The results of these different experiments enhance the importance of the melting mechanism and put in evidence that the final morphology of the blend is controlled by the opposite mechanisms of break up and coalescence.
© 1994, Carl Hanser Verlag, Munich
Articles in the same Issue
- Contents
- Contents
- Editorial
- Tenth in a Series: Fried. Krupp: Pioneer Integrated Steel and Processing Machinery Manufacturer. Part 1. Essen, Magdeburg and Harburg (1812–1960)
- Internal Mixers
- Finite Element Modelling of Non-isothermal Viscometric Flows in Rubber Mixing
- Screw Extrusion and Mixing
- The Optimisation of Masterbatch Formulations for Use in Single Screw Machines
- Morphological Changes of a Polymer Blend into a Twin-Screw Extruder
- An In-line Melt Rheometer for Molten Plastics
- Selecting Continuous Compounding Equipment Based on Process Considerations
- Reactive Processing
- Peroxide Induced and Thermal Degradation of Polypropylene
- Reactive Blending of Polyamide 6 and Polycarbonate
- Modification of Polypropylene by Maleic Anhydride
- Fibers and Films
- Melt Strength Behaviour of Polypropylenes
- Molding
- Multilayer Injection Moulding
- Miscibility and Mechanical Properties of Poly(ether imide)/Liquid Crystalline Poly(ester imide) Blends
- The Effects of Recycling and Degradation on Parison Extrusion
- Modeling and Simulation of High Reynolds' Number Flows During Reaction Injection Mold Filling
Articles in the same Issue
- Contents
- Contents
- Editorial
- Tenth in a Series: Fried. Krupp: Pioneer Integrated Steel and Processing Machinery Manufacturer. Part 1. Essen, Magdeburg and Harburg (1812–1960)
- Internal Mixers
- Finite Element Modelling of Non-isothermal Viscometric Flows in Rubber Mixing
- Screw Extrusion and Mixing
- The Optimisation of Masterbatch Formulations for Use in Single Screw Machines
- Morphological Changes of a Polymer Blend into a Twin-Screw Extruder
- An In-line Melt Rheometer for Molten Plastics
- Selecting Continuous Compounding Equipment Based on Process Considerations
- Reactive Processing
- Peroxide Induced and Thermal Degradation of Polypropylene
- Reactive Blending of Polyamide 6 and Polycarbonate
- Modification of Polypropylene by Maleic Anhydride
- Fibers and Films
- Melt Strength Behaviour of Polypropylenes
- Molding
- Multilayer Injection Moulding
- Miscibility and Mechanical Properties of Poly(ether imide)/Liquid Crystalline Poly(ester imide) Blends
- The Effects of Recycling and Degradation on Parison Extrusion
- Modeling and Simulation of High Reynolds' Number Flows During Reaction Injection Mold Filling