Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
An Analytical Model of Partial and Thorough Melting in Single-screw Extruders
-
H. Potente
Veröffentlicht/Copyright:
27. Mai 2013
Abstract
Based on the classic Tadmor model, a number of mathematical models have been developed for calculating the melting profile in single-screw machines. The most comprehensive of these is the five-zone model from Lindt. All these models can only be solved by numerical methods. Parallel to this, attempts have been made to find analytical solutions which describe the melting profile with sufficient accuracy. In this report a comprehensive analytical solution for the whole premelting- and melting process on barrel and screw with respect to the power law will be given.
Received: 1990-11-12
Accepted: 1990-12-17
Published Online: 2013-05-27
Published in Print: 1991-12-01
© 1991, Carl Hanser Verlag, Munich
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Contents
- Contents
- Review Paper
- Existing Scale-up Rules for Single-screw Plasticating Extruders
- Internal Mixers
- Scale-up Effect in Internal Mixers
- Mixing and Extrusion of High Silica and all Silica-natural Rubber Compounds
- Screw Extrusion
- An Analytical Model of Partial and Thorough Melting in Single-screw Extruders
- Dimensionless Non-Newtonian Isothermal Simulation and Scale-up Considerations for Modular Intermeshing Corotating Twin Screw Extruders
- Erratum
- Die Extrusion
- Extrusion of Rubber Compounds and Highly Filled Thermoplastics through Coathanger Dies
- Pressure Oscillations during Capillary Extrusion of High Density Polyethylene
- Frequency Analysis of Pressure Fluctuations in a Single Screw Extruder
- Fibers and Films
- Orientation and Mechanical Property Development in the Melt Spinning of Fibers from Polyetherimide and Polyarylate
- Study on the Formation of β-Crystalline from Isotactic Polypropylene Fiber
- Biaxially-oriented Polyethylene Films by Compression of Injected Moldings
- Modelling of the Cooling of Semi-crystalline Polymers during their Processing
- Molding
- Non-isothermal Mold Filling and Curing Simulation in Thin Cavities with Preplaced Fiber Mats
- Predicting the Skin-Core Boundary Location in Injection Moldings
Artikel in diesem Heft
- Contents
- Contents
- Review Paper
- Existing Scale-up Rules for Single-screw Plasticating Extruders
- Internal Mixers
- Scale-up Effect in Internal Mixers
- Mixing and Extrusion of High Silica and all Silica-natural Rubber Compounds
- Screw Extrusion
- An Analytical Model of Partial and Thorough Melting in Single-screw Extruders
- Dimensionless Non-Newtonian Isothermal Simulation and Scale-up Considerations for Modular Intermeshing Corotating Twin Screw Extruders
- Erratum
- Die Extrusion
- Extrusion of Rubber Compounds and Highly Filled Thermoplastics through Coathanger Dies
- Pressure Oscillations during Capillary Extrusion of High Density Polyethylene
- Frequency Analysis of Pressure Fluctuations in a Single Screw Extruder
- Fibers and Films
- Orientation and Mechanical Property Development in the Melt Spinning of Fibers from Polyetherimide and Polyarylate
- Study on the Formation of β-Crystalline from Isotactic Polypropylene Fiber
- Biaxially-oriented Polyethylene Films by Compression of Injected Moldings
- Modelling of the Cooling of Semi-crystalline Polymers during their Processing
- Molding
- Non-isothermal Mold Filling and Curing Simulation in Thin Cavities with Preplaced Fiber Mats
- Predicting the Skin-Core Boundary Location in Injection Moldings