Startseite Interdependence of Hygroscopic Polymer Characteristics and Drying Kinetics during Desiccant Drying and Microwave Supported Drying
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Interdependence of Hygroscopic Polymer Characteristics and Drying Kinetics during Desiccant Drying and Microwave Supported Drying

  • O. Kast , T. Schaible und C. Bonten
Veröffentlicht/Copyright: 30. Juli 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Hygroscopic polymers absorb and bind water. If not dried properly, the residual moisture can cause major problems for converting and affect the product quality significantly. Therefore, an effective drying down to an acceptable moisture level is essential for a successful production. Though data sheets give recommendations for drying parameters, these do not consider the actual current moisture up-take of the plastic pellets or the current ambient conditions. This paper investigates the interdependencies of polymer characteristics, like thermal properties and molecular structure, and the drying kinetics of the respective polymers. Tests are carried out with five different polymers on a State-of-the-Art desiccant dryer. The results show that distinctive drying behaviors can be attributed to the molecular structure of the respective plastic. This is reflected by the activation energy according to Arrhenius, the diffusion coefficient and the Flory-Huggins-Parameter, all showing a positive correlation with drying speed and therefore can be used as indicators to estimate drying times. Also, an industrial scale prototype of a microwave enhanced drying system was used to investigate the effect of microwave application on the drying kinetics. Experimental results show potential for reducing the drying times needed, especially for lower temperatures of the drying air and highly hydrophilic plastics. For higher temperatures, however, the prototype could not compete with the state-of-the-art desiccant dryer, due to heat losses and inefficient tubing of the prototype. Considering this, the benefits of microwave application could be shown representatively for polyamide 6 also at higher temperatures.


Correspondence address, Mail address: Tobias Schaible, Institut für Kunststofftechnik, Pfaffenwaldring 32, 70569 Stuttgart, Germany, E-Mail:

References

Anjos, A. R., Faria, J. A. F. and MarsaioliJr., A., “Packaging Science and Technology, Continuous Microwave Drying of Polyethylene Terephthalate (PET)”, in Developments in Food Engineering, Yano, T., Matsuno, R. and Nakamura, K. (Eds.), Developments in Food Engineering, Springer, Berlin, p. 796798 (1994) 10.1007/978-1-4615-2674-2_259Suche in Google Scholar

Bierther GmbH: Mikrowellentrocknung, Technical Data Sheet, Bierther GmbH, Bad Kreuznach (2012)Suche in Google Scholar

Bonten, C.: Kunststofftechnik – Einführung und Grundlagen, 2nd Edition, Hanser Publishers, Munich (2016) 10.3139/9783446449176Suche in Google Scholar

Carrascal, I., Casado, J. A., Polanco, J. A. and Gutiérrez-Solana, F., “Absorption and Diffusion of Humidity in Fiberglass-Reinforced Polyamide”, Polym. Compos,.26, 580586 (2005) 10.1002/pc.20134Suche in Google Scholar

Ehrenstein, G. W., Pongratz, S.: Beständigkeit von Kunststoffen, Hanser Publishers Munich (2007) 10.3139/9783446411494Suche in Google Scholar

GilesJr., H. F.WagnerJr., J. R. and MountIII, E. M.: Extrusion. The Definitive Processing Guide and Handbook, 2nd Edition, William Andrew, Norwich, NY (2013)Suche in Google Scholar

Guerrier, B., Bouchard, C., Allain, C. and Bénard, C., “Drying Kinetics of Polymer Films”, AIChe J., 44, 791798 (1998) 10.1002/aic.690440404Suche in Google Scholar

Kast, O., Schaible, T. and Bonten, C., “Untersuchung eines Mikrowellenunterstützten Kunststoff-Granulattrockners”, in Proceedings 25. Stuttgarter Kunststoffkolloquium, Bonten, C., Kreutzbruck, M., (Eds.), p. 117122 (2017a)Suche in Google Scholar

Kast, O., Schaible, T. and Bonten, C., “Investigation of a Microwave Supported Polymer Pellet Dryer”, SPE ANTEC Tech. Papers, 15141519 (2017b)Suche in Google Scholar

Masaro, L., Zhu, X. X., “Physical Models of Diffusion for Polymer Solutions, Gels and Solids”, Prog. Polym. Sci., 24, 731775 (1999) 10.1021/ma951159cSuche in Google Scholar

Meier, E., “Trocknungsverlauf hygroskopischer Stoffe mit konzentrations- u. temperaturabhängigen Diffusionskoeffizienten am Beispiel der Perlontrocknung“, PhD Dissertation, Technische Hochschule, Aachen (1968)Suche in Google Scholar

Muccio, E. A.: Plastics Processing Technology, 4th Edition, ASM International, Russel Township (1999)Suche in Google Scholar

Perry, R. H., Green, D. W.: Perry's Chemical Engineers' Handbook, 8th Edition, University of Kansas (2008)Suche in Google Scholar

Suherman: Drying Kinetics of Granular and Powdery Polymers, docupoint, Magdeburg (2007)Suche in Google Scholar

Vasilakos, N. P., Magalhaes, F., “Microwave Drying of Polymer”, J. Microwave Power, 19, 135144 (1984) 10.1080/16070658.1984.11689360Suche in Google Scholar

Xiao, L., Wang, B., Yang, G. and Gauthier, M., “Chapter 11 Poly(lactic acid)-Based Biomaterials: Synthesis, Modification and Applications”, in Biomedical Science, Engineering and Technology, Ghista, D. N. (Ed.), InTechOpen, Rijeka (HR), p. 247282 (2012) 10.5772/23927Suche in Google Scholar

Yano, T., Matsuno, R. and Nakamura, K.: Developments in Food Engineering, Springer, Berlin (1994) 10.1007/978-1-4615-2674-2Suche in Google Scholar

Zemp, G., “Beitrag zur Kenntnis der Vorgänge bei der Trocknung von Polyamid-66-Granulaten”, PhD Dissertation, Eidgenössische Technische Hochschule Zürich, Zurich (1969) 10.3929/ETHZ-A-000085780Suche in Google Scholar

Received: 2020-03-12
Accepted: 2020-05-02
Published Online: 2020-07-30
Published in Print: 2020-08-13

© 2020, Carl Hanser Verlag, Munich

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.3960/pdf
Button zum nach oben scrollen