Startseite Enhancing Flame Retardancy, Thermal Stability, Physical and Mechanical Properties of Polyethylene Foam with Polyphosphate Modified Expandable Graphite and Ammonium Polyphosphate
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enhancing Flame Retardancy, Thermal Stability, Physical and Mechanical Properties of Polyethylene Foam with Polyphosphate Modified Expandable Graphite and Ammonium Polyphosphate

  • M.-F. Ma , X.-Y. Pang und R. Chang
Veröffentlicht/Copyright: 18. April 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The method of preparing polyolefin foam with good flame retardancy, thermal stability, and physical and mechanical properties was investigated. Foaming condition of linear low density polyethylene (LLDPE) was investigated with triphenyl phosphate (TPP) as plasticizer, NaHCO3 as foaming agent. The influence of modified expandable graphite (EGP) and ammonium polyphosphate (II) on foam density, compression strength, combustion characteristics and thermal stability was explored. Results verified that EGP presented better dilatability and flame retardancy than the normal expandable graphite. Addition of EGp improved the limiting oxygen index (LOI) of 15NaHCO3/100 LLDPETPP/30EGp foam from 18.8% to 24.6%. Furthermore, the combination of EGp and ammonium polyphosphate (II) (APP) at the mass ratio of 2:1 improved the LOI of 15NaHCO3/100 LLDPETPP/20EGp/10APP sample to 27.9%, and the vertical burning UL-94 level reached V-0, indicating that this material was flame retardant. Although these additives made 15NaHCO3/100 LLDPETPP/20EGp/10APP composite exhibit a high density of 142.5 kg m−3, which was increased by 12.3 wt% relative to the 15NaHCO3/100 LLDPETPP foam, it could improve the compressive strength to 0.4747 MPa, which was about 2.7 times that of the matrix. The thermal stability of the material was also enhanced.


*Correspondence address, Mail address: Xiuyan Pang, College of Chemistry and Environmental Science, Hebei University, Hezuo Road No. 180, Baoding, 071002, PRC, E-mail:

References

Cheng, L. P., Yuan, G., Tian, Y. Z., Lv, Q. and Qin, J., “Study on the Preparation and Properties of Flame-Retardant PP/MPOP/TPP Composites”, Chinese Plastics Industry, 40, 9295 (2012)Suche in Google Scholar

Choi, S. K., Jo, B. W., Moon, S. C. and Choi, Y. S., “Flame Retardant Polyethylene/Organo-Nanocomposite Foams Cross-Linked by Electron Beam Irradiation”, J. Nanosci. Nanotechnol., 8, 56105613 (2008)PMid:19198510; 10.1166/jnn.2008.1438Suche in Google Scholar

Feng, F. F., Qian, L. J., “The Flame Retardant Behaviors and Synergistic Effect of Expandable Graphite and Dimethyl Methylphosphonate in Rigid Polyurethane Foams”, Polym. Compos., 35, 301309 (2014) 10.1002/pc.22662Suche in Google Scholar

Ge, L. L., Duan, H. J., Zhang, X. G., Chen, C., Tang, J. H. and Li, Z. M., “Synergistic Effect of Ammonium Polyphosphate and Expandable Graphite on Flame-Retardant Properties of Acrylonitrile-Butadiene-Styrene”, J. Appl. Polym. Sci., 126, 13371343 (2012) 10.1002/app.36997Suche in Google Scholar

Hu, X. M., Wang, D. M., “Enhanced Fire Behavior of Rigid Polyurethane Foam by Intumescent Flame Retardants”, J. Appl. Polym. Sci., 129, 238246 (2013) 10.1002/app.38722Suche in Google Scholar

Huang, J. D., Tang, Q. Q., Liao, W. B., Wang, G. C., Wei, W. and Li, C. Z., “Green Preparation of Expandable Graphite and its Application in Flame-Resistance Polymer Elastomer”, Ind. Eng. Chem. Res., 56, 52535261 (2017) 10.1021/acs.iecr.6b04860Suche in Google Scholar

Inagaki, N., Onishi, H., Kunisada, H. and Katsuura, K., “Flame Retardancy Effects of Halogenated Phosphates on Poly(ethylene terephthalate) Fabric”, J. Appl. Polym. Sci., 21, 217224 (1977) 10.1002/app.1977.070210119Suche in Google Scholar

Kawamura, K., “Electron Spin Resonance Behavior of Pitch-Based Carbons in the Heat Treatment Temperature Range of 1100–2000°C”, Carbon, 36, 12271230 (1998) 10.1016/S0008-6223(98)00103-1Suche in Google Scholar

KrugerH. J., Focke, W. W., Mhike, W., Taute, A. and Roberson, A., “Thermal Properties of Polyethylene Flame Retarded with Expandable Graphite and Intumescent Fire Retardant Additives”, Fire Mater., 41, 573586 (2017) 10.1002/fam.2387Suche in Google Scholar

Liu, Y. L., He, J. Y. and Yang, R. J., “Effects of Dimethyl Methylphosphonate, Aluminum Hydroxide, Ammonium Polyphosphate, and Expandable Graphite on the Flame Retardancy and Thermal Properties of Polyisocyanurate-Polyurethane Foams”, Ind. Eng. Chem. Res., 54, 58765884 (2015) 10.1021/acs.iecr.5b01019Suche in Google Scholar

Lorenzetti, A., Dittrich, B., Schartel, B., Roso, M. and Modesti, M., “Expandable Graphite in Polyurethane Foams: The Effect of Expansion Volume and Intercalants on Flame Retardancy”, J. Appl. Polym. Sci., (2017) 10.1002/app.45173Suche in Google Scholar

Lu, Y. B., Zhang, Y. J. and Xu, W. J., “Flame Retardancy and Mechanical Properties of Ethylene-Vinyl Acetate Rubber with Expandable Graphite/Ammonium Polyphosphate/Dipentaerythritol System”, J. Macromol. Sci., 50, 18641872 (2011) 10.1080/00222348.2011.553168Suche in Google Scholar

Menachem, L., “Synergism and Catalysis in Flame Retardancy of Polymers”, Polym. Advan. Techn., 12, 215222 (2001) 10.1002/pat.132Suche in Google Scholar

Ming, G., Chen, S., Sun, Y. J. and Wang, Y. X., “Flame Retardancy and Thermal Properties of Flexible Polyurethane Foam Containing Expanded Graphite”, Combust. Sci. Technol., 189, 793805 (2017) 10.1080/00102202.2016.1251910Suche in Google Scholar

Pang, X. Y., Shi, X. Z., Kang, X. O., Duan, M. W. and Weng, M. Q., “Preparation of Borate-Modified Expandable Graphite and its Flame Retardancy on Acrylonitrile-Butadiene-Styrene Resin”, Polym. Compos., 37, 26732683 (2016) 10.1002/pc.23461Suche in Google Scholar

Pang, X. Y., Tian, Y. and Weng, M. Q., “Preparation of Expandable Graphite with Silicate Assistant Intercalation and Its Effect on Flame Retardancy of Ethylene Vinyl Acetate Composites”, Polym. Composite., 36, 14071416 (2015) 10.1002/pc.23047Suche in Google Scholar

Pang, X. Y., Tian, Y., Duan, M. W. and Zhai, M., “Preparation of Low Initial Expansion Temperature Expandable Graphite and its Flame Retardancy for LLDPE”, Cent. Eur. J. Chem., 11, 953959 (2013) 10.2478/s11532-013-0227-2Suche in Google Scholar

Román-Lorza, S., Sabadell, J., García-Ruiz, J. J., Rodríguez-Pérez, M. A. and Sáez, J. A. S., “Fabrication and Characterization of Halogen-Free Flame Retardant Polyolefin Foams”, Mater. Sci. Forum., 636–637, 198205 (2010) 10.4028/www.scientific.net/MSF.636-637.198Suche in Google Scholar

Schartel, B., Wei, A., Mohr, F., Kleemeier, M., Hartwig, A. and Braun, U., “Flame Retarded Epoxy Resins by Adding Layered Silicate in Combination with the Conventional Protection-Layer-Building Flame Retardants Melamine Borate and Ammonium Polyphosphate”, J. Appl. Polym. Sci., 118, 11341143 (2010) 10.1002/app.32512Suche in Google Scholar

Schmitt, E., “Phosphorus-Based Flame Retardants for Thermoplastics”, Plastics Additives & Compounding, 9, 2630 (2007) 10.1016/S1464-391X(07)70067-3Suche in Google Scholar

Seefeldt, H., Braun, U. and Wagner, M. H., “Residue Stabilization in the Fire Retardancy of Wood-Plastic Composites: Combination of Ammonium Polyphosphate, Expandable Graphite, and Red Phosphorus”, Macromol. Chem. Phys., 213, 23702377 (2012) 10.1002/macp.201200119Suche in Google Scholar

Veen, I. V., Boer, J. D., “Phosphorus Flame Retardants: Properties, Production, Environmental Occurrence, Toxicity and Analysis”, Chemosphere, 88, 11191153 (2012)PMid:22537891; 10.1016/j.chemosphere.2012.03.067Suche in Google Scholar

Wang, C. Q., Ge, F. Y., Sun, J. and Cai, Z. S., “Effects of Expandable Graphite and Dimethyl Methylphosphonate on Mechanical, Thermal, and Flame-Retardant Properties of Flexible Polyurethane Foams”, J. Appl. Polym. Sci., 130, 916926 (2013) 10.1002/app.39252Suche in Google Scholar

Wilke, A., Langfeld, K., Ulmer, B., Andrievici, V., Hörold, A., Limbach, P., Bastian, M. and Schartel, B., “Halogen-Free Multicomponent Flame Retardant Thermoplastic Styrene-Ethylene-Butylene-Styrene Elastomers Based on Ammonium Polyphosphate-Expandable Graphite Synergy”, Ind. Eng. Chem. Res., 56, 82518263 (2017) 10.1021/acs.iecr.7b01177Suche in Google Scholar

Wit, C. A., “An Overview of Brominated Flame Retardants in the Environment”, Chemosphere, 46, 583624 (2002) 10.1016/S0045-6535(01)00225-9Suche in Google Scholar

Xie, R. C., Qu, B. J., “Expandable Graphite Systems for Halogen-Free Flame-Retarding of Polyolefins. I. Flammability Characterization and Synergistic Effect”, J. Appl. Polym. Sci., 80, 11901197 (2001) 10.1002/app.1203Suche in Google Scholar

Zhai, Z. X., Pang, X. Y., Lin, R. N., Sun, S. Y. and Weng, M. Q., “Preparation and Characteristics of Expandable Graphite with Sodium Tripolyphosphate Assistant Intercalation”, Asian J. Chem., 27, 29712975 (2015) 10.14233/ajchem.2015.184Suche in Google Scholar

Zhang, J., Ji, K. J. and Xia, Y. Z.: Combustion of Polymer and Flame Resistant Technology, Chemical Industry Press, Beijing, p. 209212 (2005)Suche in Google Scholar

Zhang, Y., Chen, X. L. and Fang, Z. P., “Synergistic Effects of Expandable Graphite and Ammonium Polyphosphate with a New Carbon Source Derived from Biomass in Flame Retardant ABS”, J. Appl. Polym. Sci., 128, 24242432 (2013) 10.1002/app.38382Suche in Google Scholar

Zhao, H. M., Pang, X. Y. and Lin, R. N., “Preparation of Boric Acid Modified Expandable Graphite and its Influence on Polyethylene Combustion Characteristics”, J. Chil. Chem. Soc., 61, 27672771 (2016) 10.4067/S0717-97072016000100004Suche in Google Scholar

Received: 2018-05-17
Accepted: 2018-07-24
Published Online: 2019-04-18
Published in Print: 2019-04-29

© 2019, Carl Hanser Verlag, Munich

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Regular Contributed Articles
  4. Flow-Fiber Coupled Viscosity in Injection Molding Simulations of Short Fiber Reinforced Thermoplastics
  5. Effects of Cooling Ways on the Structure of Polypropylene Hollow Fiber Membranes Prepared by Stretching
  6. Fill Factor Effects in Highly-Viscous Non-Isothermal Rubber Mixing Simulations
  7. Morphology and Isothermal Crystallization Kinetics of Polypropylene/Poly(ethylene-co-vinyl alcohol) Blends
  8. Mechanical and Thermal Properties of Teak Wood Flour/Starch Filled High Density Polyethylene Composites
  9. Three-Dimensional, Non-Isothermal Simulations of the Effect of Speed Ratio in Partially-Filled Rubber Mixing
  10. Edge Effect in Hot Embossing and its Influence on Global Pattern Replication of Polymer-Based Microneedles
  11. Enhancing Flame Retardancy, Thermal Stability, Physical and Mechanical Properties of Polyethylene Foam with Polyphosphate Modified Expandable Graphite and Ammonium Polyphosphate
  12. Processing LDS-Circuit Boards by Selective Laser Sintering
  13. Structural and Optical Characteristics of Laser Irradiated CdSe/PVA Nanocomposites
  14. The Effect of Ultraviolet Ageing on the Flame Retardancy, Thermal Stability and Mechanical Properties of LGFPP/IFR
  15. Preparation and Characterization of a Biocomposite Based on Cork Microparticles in Poly(β-hydroxybutyrate)-co-Poly(β-hydroxyvalerate) Matrix
  16. Partially Filled Flow Simulation Using Meshfree Method for High Viscosity Fluid in Plastic Mixer
  17. PPS News
  18. PPS News
  19. Seikei Kakou Abstracts
  20. Seikei-Kakou Abstracts
Heruntergeladen am 17.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.3714/html
Button zum nach oben scrollen