Home Development of Dispersion during Compounding and Extrusion of Polypropylene/Graphite Nanoplates Composites
Article
Licensed
Unlicensed Requires Authentication

Development of Dispersion during Compounding and Extrusion of Polypropylene/Graphite Nanoplates Composites

  • P. Rodrigues , R. M. Santos , M. C. Paiva and J. A. Covas
Published/Copyright: November 29, 2017
Become an author with De Gruyter Brill

Abstract

Carbon-based nanoparticles have unique electrical, thermal, barrier and mechanical properties. When incorporated into polymer matrices, the resulting nanocomposites are potentially suitable for a wide scope of advanced applications. In practice, the properties of the nanocomposites are strongly determined by the level of dispersion achieved and by the degree of polymer/particle interfacial bonding. Production and processing of nanocomposites are often carried out in successive thermo-mechanical cycles. These may change the state of nanoparticle dispersion. This work analyzes the evolution of the dispersion of graphite nanoplates (GnP) in a polypropylene matrix during compounding in a co-rotating twin screw extruder and subsequent processing in a single screw extruder, aiming at a better understanding of the kinetics and stability of dispersion. Dispersion was evaluated along the compounding and processing stages and correlated with the composite electrical conductivity, an important engineering property. Two commercial GnP were used as received and chemically modified to graft PP-g-MA (fGnP-PP). Compositions with 2 or 10 wt.% of GnP and fGnP-PP were studied.


*Correspondence address, Mail address: José A. Covas, Institute for Polymers and Composites/I3N, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal, E-mail:

References

Alig, I., Pötschke, P., Lellinger, D., Skipa, T., Pegel, S., Kasaliwal, G. R. and Villmow, T., “Establishment, Morphology and Properties of Carbon Nanotube Networks in Polymer Melts”, Polymer, 53, 428 (2012) 10.1016/j.polymer.2011.10.063Search in Google Scholar

Bhattacharyya, A. R., Sreekumar, T. V., Liu, T., Kumar, S., Ericson, L. M. and Hauge, R. H., “Crystallization and Orientation Studies in Polypropylene/Single Wall Carbon Nanotube Composite”, Polymer, 44, 23732377 (2003) 10.1016/S0032-3861(03)00073-9Search in Google Scholar

Coleman, J. N., Khan, U., Blau, W. J. and Gun'ko, Y. K., “Small But Strong: A review of the Mechanical Properties of Carbon Nanotube–Polymer Composites”, Carbon, 44, 16241652 (2006) 10.1016/j.carbon.2006.02.038Search in Google Scholar

Domingues, N., Gaspar-Cunha, A., Covas, J. A., Camesasca, M., Kaufman, M. and Manas-Zloczower, I., “Dynamics of Filler Size and Spatial Distribution in a Plasticating Single Screw Extruder – Modeling and Experimental Observations”, Int. Polym. Proc., 25, 188198 (2010) 10.3139/217.2319Search in Google Scholar

Filippone, G., Romeo, G. and Acierno, D., “Viscoelasticity and Structure of Polystyrene/Fumed Silica Nanocomposites: Filler Network and Hydrodynamic Contributions”, Langmuir, 26, 27142720 (2010) PMid:20000614; 10.1021/la902755rSearch in Google Scholar PubMed

Hwang, T. Y., Kim, H. J., Ahn, Y. and Lee, J. W.Influence of Twin Screw Extrusion Processing Condition on the Properties of Polypropylene/Multi-Walled Carbon Nanotube Nanocomposites”, Korea-Aus. Rheol. J., 22, 141148 (2010)Search in Google Scholar

Jamali, S., Paiva, M. C. and Covas, J. A., “Dispersion and Re-Agglomeration Phenomena during Melt Mixing of Polypropylene with Multi-Wall Carbon Nanotubes”, Polym. Test., 32, 701707 (2013) 10.1016/j.polymertesting.2013.03.005Search in Google Scholar

Jia, X. L., Listak, J., Witherspoon, V., Kalu, E. E., Yang, X. P. and Bockstaller, M. R., “Effect of Matrix Molecular Weight on the Coarsening Mechanism of Polymer-Grafted Gold Nanocrystals”, Langmuir, 26, 1219012197 (2010) PMid:20575544; 10.1021/la100840aSearch in Google Scholar PubMed

Kasaliwal, G. R., Pegel, S., Göldel, A., Pötschke, P. and Heinrich, G., “Analysis of Agglomerate Dispersion Mechanisms of Multiwalled Carbon Nanotubes during Melt Mixing in Polycarbonate”, Polymer, 51, 27082720 (2010) 10.1016/j.polymer.2010.02.048Search in Google Scholar

Kasaliwal, G. R., Göldel, A., Pötschke, P. and Heinrich, G., “Influences of Polymer Matrix Melt Viscosity and Molecular Weight on MWCNT Agglomerate Dispersion”, Polymer, 52, 10271036 (2011a) 10.1016/j.polymer.2011.01.007Search in Google Scholar

Kasaliwal, G. R., Villmow, T., Pegel, S. and Pötschke, P., “Chapter 4 Influence of the Material and Processing Parameters on Carbon Nanotube Dispersion in Polymer Melts”, in Polymer–Carbon Nanotube Composites – Preparation, Properties and Applications”, McNally, T., Pötschke, P. (Eds.), Series in Composites Science and Engineering, Woodhead Publishing, Cambridge, UK, p. 92132 (2011b)10.1533/9780857091390.1.92Search in Google Scholar

Kiel, J. W., Eberle, A. P. R. and Mackay, M. E., “Nanoparticle Agglomeration in Polymer-Based Solar Cells”, Phys. Rev. Lett., 105, 1687011687014 (2010) 10.1103/PhysRevLett.105.168701Search in Google Scholar PubMed

Liu, J., Gao, Y., Cao, D., Zhang, L. and Guo, Z., “Nanoparticle Dispersion and Aggregation in Polymer Nanocomposites: Insights from Molecular Dynamics Simulation”, Langmuir, 27, 79267933 (2011) PMid:21595451; 10.1021/la201073mSearch in Google Scholar PubMed

Liu, J., Tang, J. and Gooding, J. J., “Strategies for Chemical Modification of Graphene and Applications of Chemically Modified Graphene”, J. Mater. Chem., 22, 1243512452 (2012) 10.1039/c2jm31218bSearch in Google Scholar

Ma, P.-C., Siddiqui, N. A., Marom, G. and Kim, J.-K., “Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review”, Composites Part A, 41, 13451367 (2010a) 10.1016/j.compositesa.2010.07.003Search in Google Scholar

Ma, P. C., Mo, S.-Y., Tang, B.-Z. and Kim, J.-K., “Dispersion, Interfacial Interaction and Re-Agglomeration of Functionalized Carbon Nanotubes in Epoxy Composites”, Carbon, 48, 18241834 (2010b) 10.1016/j.carbon.2010.01.028Search in Google Scholar

Paiva, M. C., Simon, F., Novais, R. M., Ferreira, T., Proença, M. F., Xu, W. and Besenbacher, F., “Controlled Functionalization of Carbon Nanotubes by a Solvent-free Multicomponent Approach”, ACS Nano, 4, 73797386 (2010) PMid:21117643; 10.1021/nn1022523Search in Google Scholar PubMed

Pan, Y., ChanS. H. and Zhao, J.Correlation between Dispersion State and Electrical Conductivity of MWCNTs/PP Composites Prepared by Melt Blending”, Composites Part A, 41, 419426 (2010) 10.1016/j.compositesa.2009.11.009Search in Google Scholar

Pegel, S., Potschke, P., Petzold, G., Alig, I., Dudkin, S. M. and Lellinger, D., “Dispersion, Agglomeration, and Network Formation of Multiwalled Carbon Nanotubes in Polycarbonate Melts”, Polymer, 49, 974984 (2008) 10.1016/j.polymer.2007.12.024Search in Google Scholar

Randviir, E. P., Brownson, D. A. C. and Banks, C. E., “A Decade of Graphene Research: Production, Applications and Outlook”, Mater. Today, 17, 426432 (2014) 10.1016/j.mattod.2014.06.001Search in Google Scholar

Richter, S., Saphiannikova, M., Jehnichen, D., Bierdel, M. and Heinrich, G., “Experimental and Theoretical Studies of Agglomeration Effects in Multi-Walled Carbon Nanotube-Polycarbonate Melts”, eXPRESS Polym. Lett., 3, 753768 (2009) 10.3144/expresspolymlett.2009.94Search in Google Scholar

Santos, R. M., Vilaverde, C., Cunha, E., Paiva, M. C. and Covas, J. A., “Probing Dispersion and Re-Agglomeration Phenomena upon Melt-Mixing of Polymer Functionalized Graphite Nanoplates”, Soft Matter., 12, 7786 (2016) PMid:26439171; 10.1039/c5sm01366fSearch in Google Scholar PubMed

Sathyanarayana, S., Hubner, C., “Thermoplastic Nanocomposites with Carbon Nanotubes”, in Structural Nanocomposites, Engineering Materials”, Njuguna, J. (Ed.), Springer, Berlin Heidelberg, p. 1960 (2013) 10.1007/978-3-642-40322-4_2Search in Google Scholar

Scurati, A., Feke, D. L. and Manas-Zloczower, I., “Analysis of the Kinetics of Agglomerate Erosion in Simple Shear Flows”, Chem. Eng. Sci., 60, 65646573 (2005) 10.1016/j.ces.2005.05.059Search in Google Scholar

Shah, R., Kausar, A., Muhammad, B. and Shah, S., “Progression from Graphene and Graphene Oxide to High Performance Polymer-Based Nanocomposite: A Review”, Polym.-Plast. Technol. Eng., 54, 173183 (2015) 10.1080/03602559.2014.955202Search in Google Scholar

Singh, V., Joung, D., Zhaia, L., Dasa, S., KhondakeraS. I. and Seal, S.Graphene Based Materials: Past, Present and Future”, Prog. Mater. Sci, 56, 11781271 (2011) 10.1016/j.pmatsci.2011.03.003Search in Google Scholar

Socher, R., Krause, B., Müller, M. T., Boldt, R. and Pötschke, P., “The Influence of Matrix Viscosity on MWCNT Dispersion and Electrical Properties in Different Thermoplastic Nanocomposites”, Polymer, 53, 495504 (2012) 10.1016/j.polymer.2011.12.019Search in Google Scholar

Sur, U. K., “Graphene: A Rising Star on the Horizon of Materials Science”, Int. J. Electrochem., ArticleID 237689, 12 pages (2012) 10.1155/2012/237689Search in Google Scholar

Vilaverde, C., Santos, R. M., Paiva, M. C. and Covas, J. A., “Dispersion and Re-Agglomeration of Graphite Nanoplates in Polypropylene Melts under Controlled Flow Conditions”, Composites Part A, 78, 143151 (2015) 10.1016/j.compositesa.2015.08.010Search in Google Scholar

Zhang, R., Dowden, A., Deng, H., Baxendale, M. and Peijs, T., “Conductive Network Formation in the Melt of Carbon Nanotube/Thermoplastic Polyurethane Composite”, Compos. Sci. Technol., 69, 14991504 (2009) 10.1016/j.compscitech.2008.11.039Search in Google Scholar

Received: 2017-04-24
Accepted: 2017-06-03
Published Online: 2017-11-29
Published in Print: 2017-11-17

© 2017, Carl Hanser Verlag, Munich

Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.3485/pdf
Scroll to top button