Crystallization of Polymers in Processing Conditions: An Overview
-
J.-M. Haudin
and S. A. E. Boyer
Abstract
In polymer processing, crystallization generally occurs in complex, inhomogeneous and coupled mechanical (flow, pressure), thermal (cooling rate, temperature gradient) and geometrical (surface of processing tools) conditions. A first route to understand crystallization in processing conditions is to design model experiments to isolate the specific influence of a given parameter. The emphasis will be laid here on the influence of: (i) shear flow through rheo-optical measurements using the commercial RheoScope module, (ii) high cooling rates obtained with the modified hot stage Cristaspeed (up to 2 000 °C min−1) and (iii) high pressures in the original Cristapress cell (up to 200 MPa). Numerical simulation is also a useful tool to understand and predict the coupled phenomena involved in crystallization. Based on Avrami's ideas and equations, a general differential formulation of overall crystallization kinetics has been proposed by Haudin and Chenot (2004). It is able to treat both isothermal and non-isothermal cases, and has been extended to crystallization in a limited volume without and with surface nucleation inducing transcrystallinity.
References
Adamovsky, S. A., Minakov, A. A. and Schick, C., “Scanning Microcalorimetry at High Cooling Rate”, Thermochim. Acta, 403, 55–63 (2003) 10.1016/S0040-6031(03)00182-5Search in Google Scholar
Angelloz, C., Fulchiron, R., Douillard, A., Chabert, B., Fillit, R., Vautrin, A. and David, L., “Crystallization of Isotactic Polypropylene under Pressure”, Macromolecules, 33, 4138–4145 (2000) 10.1021/ma991813eSearch in Google Scholar
Avrami, M., “Kinetics of Phase Change. I. General Theory”, J. Chem. Phys., 7, 1103–1112 (1939) 10.1063/1.1750380Search in Google Scholar
Avrami, M., “Kinetics of Phase Change. II. Transformation-Time Relations for Random Distribution of Nuclei”, J. Chem. Phys., 8, 212–224 (1940) 10.1063/1.1750631Search in Google Scholar
Avrami, M., “Kinetics of Phase Change. III. Granulation, Phase Change and Microstructure”, J. Chem. Phys., 9, 177–184 (1941) 10.1063/1.1750872Search in Google Scholar
Billon, N., Barq, P. and Haudin, J. M., “Modelling of the Cooling of Semi-Crystalline Polymers during Their Processing”, Int. Polym. Proc., 6, 348–355 (1991) 10.3139/217.910348Search in Google Scholar
Billon, N., Magnet, C., Haudin, J. M. and Lefebvre, D., “Transcrystallinity Effects in Thin Polymer Films. Experimental and Theoretical Approach”, Colloid Polym. Sci., 272, 633–654 (1994) 10.1007/BF00659278Search in Google Scholar
Boutahar, K., Carrot, C. and Guillet, J., “Crystallization of Polyolefins from Rheological Measurements – Relation between the Transformed Fraction and the Dynamic Moduli”, Macromolecules, 31, 1921–1929 (1998) 10.1021/ma9710592Search in Google Scholar
Boyer, S. A. E., Haudin, J. M., “Crystallization of Polymers at Constant and High Cooling Rates: A New Hot-Stage Microscopy Set-Up”, Polym. Test., 29, 445–452 (2010) 10.1016/j.polymertesting.2010.02.003Search in Google Scholar
Boyer, S. A. E., Robinson, P., Ganet, P., Melis, J. P. and Haudin, J. M., “Crystallization of Polypropylene at High Cooling Rates: Microscopic and Calorimetric Studies”, J. Appl. Polym. Sci., 125, 4219–4232 (2012) 10.1002/app.36578Search in Google Scholar
Boyer, S. A. E., Gandin, Ch.-A. and Haudin, J. M., “A Newly Designed Experiment for High-Pressure Solidification of Transparent Materials”, TMS2013 (The Minerals, Metals and Materials Society), 142th Annual Meeting and Exhibition, Symposium Frontiers in Solidification Science: In-situ Observations and X-ray Imaging, San Antonio, Texas, USA (2013)10.1002/9781118663547.ch55Search in Google Scholar
Boyer, S. A. E., Fournier, F. E. J., Gandin, Ch.-A. and Haudin, J. M., “CRISTAPRESS: An Optical Cell for Structure Development in High-Pressure Crystallization”, Rev. Sci. Instrum., 85, 013906 (2014) PMid:24517781; 10.1063/1.4862473Search in Google Scholar
Brucato, V., De Santis, F., Giannattasio, A., Lamberti, G. and Titomanlio, G., “Crystallization during Fast Cooling Experiments, a Novel Apparatus for Real Time Monitoring”, Macromol. Symp., 185, 181–196 (2002) 10.1002/1521-3900(200208)185:1<181::AID-MASY181>3.0.CO;2-OSearch in Google Scholar
Ding, Z., Spruiell, J. E., “An Experimental Method for Studying Nonisothermal Crystallization of Polymers at Very High Cooling Rates”, J. Polym. Sci. B, Polym. Phys., 34, 2783–2804 (1996) 10.1002/(SICI)1099-0488(19961130)34:16<2783::AID-POLB12>3.0.CO;2-6Search in Google Scholar
Durin, A., Chenot, J. L., Haudin, J. M., Boyard, N. and Bailleul, J. L., “Simulating Polymer Crystallization in Thin Films: Numerical and Analytical Methods”, Europ. Polym. J., 73, 1–16 (2015) 10.1016/j.eurpolymj.2015.10.001Search in Google Scholar
Durin, A., Boyard, N., Bailleul, J. L., Billon, N., Chenot, J. L. and Haudin, J. M., “Semianalytical Models to Predict the Crystallization Kinetics of Thermoplastic Fibrous Composites”, J. Appl. Polym. Sci., 134, 44508 (2017) 10.1002/app.44508Search in Google Scholar
Evans, U. R., “The Laws of Expanding Circles and Spheres in Relation to the Lateral Growth of Surface Films and the Grain-Size of Metals”, Trans. Faraday Soc., 41, 365–375 (1945) 10.1039/TF9454100365Search in Google Scholar
Forstner, R., Peters, G. W. M., and Meijer, H. E. H., “A Novel Dilatometer for PVT Measurements of Polymers at High Cooling – and Shear Rates”, Int. Polym. Proc., 24, 114–121 (2009) 10.3139/217.2154Search in Google Scholar
Fulchiron, R., Koscher, E., Poutot, G., Delaunay, D. and Régnier, G., “Analysis of the Pressure Effect on the Crystallization Kinetics of Polypropylene: Dilatometric Measurements and Thermal Gradient Modeling”, J. Macromol. Sci., Phys., B40, 297–314 (2001) 10.1081/MB-100106159Search in Google Scholar
Geil, P. H., Anderson, F. R., Wunderlich, B. and Arakawa, T., “Morphology of Polyethylene Crystallized from the Melt Under Pressure”, J. Polym. Sci., Part A, 2, 3707–3720 (1964) 10.1002/pol.1964.100020829Search in Google Scholar
Hassell, D. G., Mackley, M. R., “Localised Flow Induced Crystallisation of a Polyethylene Melt”, Rheol. Acta, 47, 435–446 (2008) 10.1007/s00397-008-0263-6Search in Google Scholar
Haudin, J. M., “Flow-Induced Crystallization in Polymer Processing”, in Advances in Material Forming. Esaform 10 Years on, Chinesta, F., Cueto, E. (Eds.), Springer, Paris, France, p. 23–35 (2007) 10.1007/978-2-287-72143-4_3Search in Google Scholar
Haudin, J. M., Chenot, J. L., “Numerical and Physical Modeling of Polymer Crystallization. Part I: Theoretical and Numerical Analysis”, Int. Polym. Proc., 19, 267–274 (2004)10.3139/217.1829Search in Google Scholar
Hoffman, J. D., Miller, R. L., “Kinetics of Crystallization from the Melt and Chain Folding in Polyethylene Fractions Revisited: Theory and Experiment”, Polymer, 38, 3151–3212 (1997) 10.1016/S0032-3861(97)00071-2Search in Google Scholar
Janssens, V., Block, C., Van Assche, G., Van Mele, B. and Van Puyvelde, P., “RheoDSC Analysis of the Hardening of Semi-Crystalline Polymers during Quiescent Isothermal Crystallization”, Int. Polym. Proc.25, 304–310 (2010) 10.3139/217.2374Search in Google Scholar
Kolmogorov, A. N., “K Statisticheskoi Teorii Kristallizacii Metallov”, Izvest. Akad. Nauk. SSSR, Ser Math, 1, 355–359 (1937)Search in Google Scholar
Lamberti, G., Peters, G. W. M. and Titomanlio, G., “Crystallinity and Linear Rheological Properties of Polymers”, Int. Polym. Proc., 22, 303–310 (2007) 10.3139/217.2006Search in Google Scholar
Liedauer, S., Eder, G., Janeschitz-Kriegl, H., Jerschow, P., Gemayer, W. and Ingolic, E., “On the Kinetics of Shear Induced Crystallization in Polypropylene”, Int. Polym. Proc., 8, 236–244 (1993) 10.3139/217.930236Search in Google Scholar
Nakamura, K., Watanabe, T., Katayama, K. and Amano, T., “Some Aspects of Nonisothermal Crystallization of Polymers. I. Relationship between Crystallization Temperature, Crystallinity and Cooling Conditions”, J. Appl. Polym. Sci., 16, 1077–1091 (1972) 10.1002/app.1972.070160503Search in Google Scholar
Nakamura, K., Katayama, K. and Amano, T., “Some Aspects of Nonisothermal Crystallization of Polymers. II. Consideration of the Isokinetic Condition”, J. Appl. Polym. Sci., 17, 1031–1041 (1973) 10.1002/app.1973.070170404Search in Google Scholar
Ozawa, T., “Kinetics of Non-Isothermal Crystallization”, Polymer, 12, 150–158 (1971) 10.1016/0032-3861(71)90041-3Search in Google Scholar
Pantani, R., Speranza, V. and Titomanlio, G., “Simultaneous Morphological and Rheological Measurements on Polypropylene: Effect of Crystallinity on Viscoelastic Parameters”, J. Rheol.59, 377–390 (2015) 10.1122/1.4906121Search in Google Scholar
Pijpers, T. F. J., Mathot, V. B. F., Goderis, B., Scherrenberg, R. L. and Van der Vegte, E. W., “High-Speed Calorimetry for the Study of the Kinetics of (De)vitrification, Crystallization, and Melting of Macromolecules”, Macromolecules, 35, 3601–3613 (2002) 10.1021/ma011122uSearch in Google Scholar
Piorkowska, E., Galeski, A. and Haudin, J. M., “Critical Assessment of Overall Crystallization Kinetics Theories and Predictions”, Prog. Polym. Sci., 31, 549–575 (2006) 10.1016/j.progpolymsci.2006.05.001Search in Google Scholar
Roozemond, P. C., Van Drongelen, M., Verbelen, L., Van Puyvelde, P. and Peters, G. W. M., “Flow-Induced Crystallization Studied in the RheoDSC Device: Quantifying the Importance of Edge Effects”, Rheol. Acta, 54, 1–8 (2015) 10.1007/s00397-014-0820-0Search in Google Scholar
Schneider, W., Köppl, A. and Berger, J., “Non-Isothermal Crystallization of Polymers. System of Rate Equations”, Int. Polym. Proc., 2, 151–154 (1988) 10.3139/217.880150Search in Google Scholar
Smirnova, J., Silva, L., Monasse, B., Chenot, J. L. and Haudin, J. M., “Structure Development in Injection Molding. A 3D Simulation with a Differential Formulation of the Kinetic Equations”, Int. Polym. Proc., 20, 178–185 (2005) 10.3139/217.1873Search in Google Scholar
Sowinski, P., Piorkowska, E., Boyer, S. A. E., Haudin, J. M. and Zapala, K., “The Role of Nucleating Agents in High-Pressure-Induced Gamma Crystallization in Isotactic Polypropylene”, Colloid Polym. Sci., 293, 665–675 (2015) PMid:25750474; 10.1007/s00396-014-3445-zSearch in Google Scholar
Sowinski, P., Piorkowska, E., Boyer, S. A. E. and Haudin, J. M., “Nucleation of Crystallization of Isotactic Polypropylene in the Gamma Form under High Pressure in Nonisothermal Conditions”, Europ. Polym. J., 85, 564–574 (2016) 10.1016/j.eurpolymj.2016.10.055Search in Google Scholar
Wagner, J., Abu-Iqyas, S., Monar, K. and Phillips, P. J., “Crystallization of Ethylene–Octene Copolymers at High Cooling Rates”, Polymer, 40, 4717–4721 (1999) 10.1016/S0032-3861(99)00077-4Search in Google Scholar
Wunderlich, B., Arakawa, T., “Polyethylene Crystallized from the Melt under Elevated Pressure”, J. Polym. Sci., Part A, 2, 3697–3706 (1964) 10.1002/pol.1964.100020828Search in Google Scholar
© 2017, Carl Hanser Verlag, Munich
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Special Issue Contributions – Review Article
- Process Induced Defects in Liquid Molding Processes of Composites
- Special Issue Contributions
- Crystallization of Polymers in Processing Conditions: An Overview
- Modelling of the Plastisol Knife Over Roll Coating Process
- Low Density Polypropylene/Waste Cellulose Fiber Composites by High-Shear Thermo-Kinetic Mixer
- Evaluation of Structures and Morphologies of Recycled PC/PET Blends Fabricated by High-Shear Kneading Processing
- Transient Swell of a High Density Polyethylene Using Adjustable Gap Slit Die
- Effect of Solvent Volatility on Diameter Selection of Bicomponent Nanofibers Produced by Gas Jet Fiber Process Test
- Flow and Thermal History Effects on Morphology and Tensile Behavior of Poly(oxymethylene) Micro Injection Molded Parts
- Tailoring Heat-Seal Properties of Biodegradable Polymers through Melt Blending
- Development of Dispersion during Compounding and Extrusion of Polypropylene/Graphite Nanoplates Composites
- The Grafting of PE-g-MA Chains on Graphene Derivatives to Improve Tensile Properties of Polyethylene
- High-Pressure Preform Foam Blow Molding
- Fluid Elasticity in Plastic Pipe Extrusion: Loads on Die Barrel
- Rheological In-Mold Measurements and Characterizations of Sheet-Molding-Compound (SMC) Formulations with Different Constitution Properties by Using a Compressible Shell Model
- PPS News
- PPS News
- Seikei Kakou Abstracts
- Seikei-Kakou Abstracts
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Special Issue Contributions – Review Article
- Process Induced Defects in Liquid Molding Processes of Composites
- Special Issue Contributions
- Crystallization of Polymers in Processing Conditions: An Overview
- Modelling of the Plastisol Knife Over Roll Coating Process
- Low Density Polypropylene/Waste Cellulose Fiber Composites by High-Shear Thermo-Kinetic Mixer
- Evaluation of Structures and Morphologies of Recycled PC/PET Blends Fabricated by High-Shear Kneading Processing
- Transient Swell of a High Density Polyethylene Using Adjustable Gap Slit Die
- Effect of Solvent Volatility on Diameter Selection of Bicomponent Nanofibers Produced by Gas Jet Fiber Process Test
- Flow and Thermal History Effects on Morphology and Tensile Behavior of Poly(oxymethylene) Micro Injection Molded Parts
- Tailoring Heat-Seal Properties of Biodegradable Polymers through Melt Blending
- Development of Dispersion during Compounding and Extrusion of Polypropylene/Graphite Nanoplates Composites
- The Grafting of PE-g-MA Chains on Graphene Derivatives to Improve Tensile Properties of Polyethylene
- High-Pressure Preform Foam Blow Molding
- Fluid Elasticity in Plastic Pipe Extrusion: Loads on Die Barrel
- Rheological In-Mold Measurements and Characterizations of Sheet-Molding-Compound (SMC) Formulations with Different Constitution Properties by Using a Compressible Shell Model
- PPS News
- PPS News
- Seikei Kakou Abstracts
- Seikei-Kakou Abstracts