Startseite Effects of Accelerated Weathering in Polylactide Biocomposites Reinforced with Microcrystalline Cellulose
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of Accelerated Weathering in Polylactide Biocomposites Reinforced with Microcrystalline Cellulose

  • C. Kaynak und B. Dogu
Veröffentlicht/Copyright: 21. Juli 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of this study was to reveal effects of accelerated weathering in neat polylactide (PLA) and its biocomposite reinforced with microcrystalline cellulose (MCC); compounded by twin-screw extrusion melt mixing and specimen shaping by injection molding. Weathering conditions were applied via consecutive steps of UV irradiation and humidity in accordance with ISO 4892–3 standards for 200 h. Various characterization techniques and mechanical tests indicated that photolysis, photo-oxidation and hydrolysis were the main degradation mechanisms leading to significant decrease in the molecular weight of PLA via main chain scission. Consequently, except elastic modulus other mechanical properties; strength, ductility and fracture toughness of PLA and PLA/MCC decreased substantially. However, after comparing the mechanical properties of the neat PLA and PLA/MCC biocomposite specimens having 200 h of accelerated weathering, it was concluded that; for the outdoor applications use of PLA/MCC biocomposite (with only 3 wt% MCC) was extremely beneficial compared to using neat PLA. For example, tensile strength is more than 91 % beneficial while strain at break ductility is more than 2.7 times beneficial.


*Correspondence address, Mail address: Cevdet Kaynak, Materials and Metallurgical Engineering Department, Middle East Technical University, Ankara, Turkey. E-mail:

References

Acioli-Moura, R., Sun, S. X., “Thermal Degradation and Physical Aging of Poly(lactic acid) and its Blends with Starch”, Polym. Eng. Sci., 48, 829836 (2008) 10.1002/pen.21019Suche in Google Scholar

Ahmed, J., VarshneyS.K., “Polylactides-Chemistry, Properties and Green Packaging Technology: A Review”, Inter. J. Food Properties, 14, 3758 (2011) 10.1080/10942910903125284Suche in Google Scholar

Chavez-MontesW.M., Gonzalez-Sanchez, G., Lopez-Martinez, E. I., Lira-Gomez, P. D., Ballinas-Casarrubias, L. and Flores-Gallardo, S., “Effect of Artificial Weathering on PLA/Nanocomposite Molecular Weight Distribution”, Polymer, 7, 760776 (2015) 10.3390/polym7040760Suche in Google Scholar

Copinet, A., Bertrand, C., Govindin, S., Coma, V. and Couturier, Y., “Effects of Ultraviolet Light (315 nm), Temperature and Relative Humidity on the Degradation of Polylactic Acid Plastic Films”, Chemosphere, 55, 763773 (2004) 10.1016/j.chemosphere.2003.11.038Suche in Google Scholar PubMed

Darie, R. N., Bodirlau, R., Teaca, C. A., Macyszyn, J., Kozlowski, M. and Spiridon, I., “Influence of Accelerated Weathering on the Properties of Polypropylene/Polylactic Acid/Eucalyptus Wood Biocomposites”, Int. J. Polym. Anal. Charact.18, 315327 (2013) 10.1080/1023666X.2013.784936Suche in Google Scholar

Deroine, M., Duigou, A. L., Corre, Y. M., Gac, Y. M. L., Davies, P., Cesar, G. and Bruzaud, S., “Accelerated Aging of Polylactide in Aqueous Environments: Comparative Study between Distilled Water and Seawater”, Polym. Degrad. Stab., 108, 319329 (2014) 10.1016/j.polymdegradstab.2014.01.020Suche in Google Scholar

Dogu, B., KaynakC., “Behavior of Polylactide/Microcrystalline Cellulose Biocomposites: Effects of Filler Content and Interfacial Compatibilization”, Cellulose, 23, 611622 (2016) 10.1007/s10570-015-0839-0Suche in Google Scholar

Fischer, E. W., Sterzel, H. J. and Wegner, G., “Investigation of Structure of Solution Grown Crystals of Lactide Copolymers by means of Chemical Reactions”, Coll. Polym. Sci., 251, 980990 (1973) 10.1007/BF01498927Suche in Google Scholar

Grigsby, W., Bridson, J., Lomas, C. and Elliot, J. A., “Esterification of Condensed Tannins and their Impact on the Properties of Poly(lactic acid)”, Polymer, 5, 344360 (2013) 10.3390/polym5020344Suche in Google Scholar

Hablot, E., Dharmalingam, S., Hayes, D. G., Wadsworth, L. C., Blazy, C. and Narayan, R., “Effect of Simulated Weathering on Physicochemical Properties and Inherent Biodegradation of PLA/PHA Nonowen Mulches”, J. Polym. Environ., 22, 417429 (2014) 10.1007/s10924-014-0697-0Suche in Google Scholar

Islam, M. S., Pickering, K. L. and Foreman, N. J., “Influence of Accelerated Ageing on the Physico-Mechanical Properties of Alkali-Treated Industrial Hemp Fibre Reinforced Poly(lactic acid) (PLA) Biocomposites”, Polym. Degrad. Stab., 95, 5965 (2010) 10.1016/j.polymdegradstab.2009.10.010Suche in Google Scholar

Janorkar, A. V., Metters, A. T. and Hirt, D. E., “Degradation of Poly(L-lactide) Films under Ultraviolet-Induced Photografting and Sterilization Conditions”, J. Appl. Polym. Sci., 106, 10421047 (2007) 10.1002/app.24692Suche in Google Scholar

Kaygusuz, I., Kaynak, C., “Influences of Halloysite Nanotubes on Crystallization Behavior of Polylactide”, Plast. Rubber Compos. Macromol. Eng., 44, 4149 (2015) 10.1179/1743289814Y.0000000116Suche in Google Scholar

Kaynak, C., Kaygusuz, I., “Consequences of Accelerated Weathering in Polylactide Nanocomposites Reinforced with Halloysite Nanotubes”, J. Compos. Mat., 50, 365375 (2016) 10.1177/0021998315575038Suche in Google Scholar

Mathew, A. P., Oksman, K. and Sain, M., “Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystalline Cellulose (MCC)”, J. Appl. Polym. Sci., 97, 20142025 (2005) 10.1002/app.21779Suche in Google Scholar

Mohamad Haafiz, M. K., Hassan, A., Zakaria, Z., Inuwa, I. M., Islam, M. S. and Jawaid, M., “Properties of Polylactic Acid Composites Reinforced with Oil Palm Biomass Microcrystalline Cellulose”, Carbohydr. Polym.98, 139145 (2013) 10.1016/j.carbpol.2013.05.069Suche in Google Scholar PubMed

Moura, I., Botelho, G. and Machado, A. V., “Characterization of EVA/PLA Blends when Exposed to Different Environments”, J. Polym. Environ., 22, 148157 (2014) 10.1007/s10924-013-0614-ySuche in Google Scholar

Mukherjee, T., Sani, M., Kao, N., Gupta, R. K., Quazi, N. and Bhattacharya, S., “Improved Dispersion of Cellulose Microcrystals in Polylactic Acid (PLA) based Composites Applying Surface Acetylation”, Chem. Eng. Sci., 101, 655662 (2013) 10.1016/j.ces.2013.07.032Suche in Google Scholar

Nampoothiri, K. M., Nair, N. R. and John, R. P.An Overview of the Recent Developments in Polylactide (PLA) Research”, Bioresour. Technol., 101, 84938501 (2010) 10.1016/j.biortech.2010.05.092Suche in Google Scholar PubMed

Ndazi, B. S., Karlsson, S., “Characterization of Hydrolytic Degradation of Polylactic Acid/Rice Hulls Biocomposites in Water at Different Temperatures”, eXPRESS Polym. Lett., 5, 119131 (2011) 10.3144/expresspolymlett.2011.13Suche in Google Scholar

Shinzawa, H., Nishida, M., Tanaka, T. and Kanematsu, W., “Accelerated Weathering-Induced Degradation of Poly(lactic acid) Fiber Studied by Near-Infrared (NIR) Hyperspectral Imaging”, Appl. Spectrosc., 66, 470474 (2012) 10.1366/11-06540Suche in Google Scholar PubMed

Spiridion, I., Paduraru, O. M., Zaltariov, M. F. and Darie, R. N., “Influence of Keratin on Polylactic Acid/Chitosan Composite Properties. Behavior upon Accelerated Weathering”, Ind. Eng. Chem. Res., 52, 98229833 (2013) 10.1021/ie400848tSuche in Google Scholar

Spiridion, I., Leluk, K., Resmerita, A. M. and Darie, R. N., “Evaluation of PLA-Lignin Bioplastics Properties before and after Accelerated Weathering”, Composites Part B, 69, 34234 (2015) 10.1016/j.compositesb.2014.10.006Suche in Google Scholar

Stloukal, P., Verney, V., Commereuc, S., Rychly, J., Matisova-Rychla, L., Pis, V. and Koutny, M., “Assessment of the Interrelation between Photooxidation and Biodegradation of Selected Polyesters after Artificial Weathering”, Chemosphere, 88, 12141219 (2012) 10.1016/j.chemosphere.2012.03.072Suche in Google Scholar PubMed

Sztajnowski, S., Krucinska, I., Sulak, K., Puchalski, M., Wrzosek, H. and Bilska, J., “Effects of the Artificial Weathering of Biodegradable Spun-Bonded PLA Nonwovens in respect to their Application in Agriculture”, Fibres Text. East. Eur., 20, 8995 (2012)Suche in Google Scholar

Tsuji, H., Echizen, Y., Nishimura, Y.,“Photodegradation of Biodegradable Polyesters: A Comprehensive Study on Poly(L-lactide) and Poly(∊-caprolactone)”, Polym. Degrad. Stab., 91, 11281137 (2006) 10.1016/j.polymdegradstab.2005.07.007Suche in Google Scholar

Xiao, L., Mai, Y., He, F., Yu, L., Zhang, L., Tang, H. and Yang, G., “Bio-Based Green Composites with High Performance from Poly(lactic acid) and Surface-Modified Microcrystalline Cellulose”, J. Mater. Chem., 22, 1573215739 (2012) 10.1039/C2JM32373GSuche in Google Scholar

Yew, G. H., Chow, W. S., Mohd Ishak, Z. A. and Mohd Yusof, A. M., “Natural Weathering of Poly (lactic acid): Effects of Rice Starch and Epoxidized Natural Rubber”, J. Elastomers Plast., 41, 369382 (2009) 10.1177/0095244309103663Suche in Google Scholar

Zaidi, L., Kaci, M., Bruzaud, S., Bourmaud, A. and Grohens, Y., “Effect of Natural Weather on the Structure and Properties of Polylactide/Cloisite 30B Nanocomposites”, Polym. Degrad. Stab., 95, 17511758 (2010) 10.1016/j.polymdegradstab.2010.05.014Suche in Google Scholar

Zhang, J., Tashiro, K., Domb, A. J. and Tsuji, H., “Confirmation of Disorder a Form of Poly(L-lactic acid) by X-Ray Fiber Pattern and Polarized IR/Raman Spectra Measured for Uniaxially-Oriented Samples”, Macromolecular Symposia, 242, 274278 (2006) 10.1002/masy.200651038Suche in Google Scholar

ZhangJ., Tashiro, K., Tsuji, H. and Domb, A. J., “Disorder-to-Disorder Phase Transition and Multiple Melting Behavior of Poly(L-lactide) Investigated by Simultaneous Measurements of WAXD and DSC”, Macromolecules, 41, 13521357 (2008) 10.1021/ma0706071Suche in Google Scholar

Received: 2015-10-26
Accepted: 2016-04-13
Published Online: 2016-07-21
Published in Print: 2016-08-12

© 2016, Carl Hanser Verlag, Munich

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Regular Contributed Articles
  4. Structural and Antibacterial Properties of PP/CuO Composite Filaments Having Different Cross Sectional Shapes
  5. Effects of Accelerated Weathering in Polylactide Biocomposites Reinforced with Microcrystalline Cellulose
  6. Using Forest Resources to Develop High Performance Plastic Compounds for the Automotive Industry
  7. Coagent Modified Polypropylene Prepared by Reactive Extrusion: A New Look into the Structure-Property Relations of Injection Molded Parts
  8. Numerical Simulation of the Injection Blow Molding Single Stage Process: Shaping of Two Different Geometries and Comparison with Experimental Thickness Measurements
  9. Effects of Montmorillonite Content and Maleic Anhydride Compatibilization on the Mechanical Behavior of Polylactide Nanocomposites
  10. Effect of Coupling Agent and Ground Tire Rubber Content on the Properties of Natural Fiber Polymer Composites
  11. Influence of Blending Protocol on the Thermal and Mechanical Properties of HDPE/LLDPE Blend-Based Nanocomposites
  12. Effect of Brominated Epoxy Resins on the Thermal Stability and Flame Retardancy of Long-Glass-Fiber Reinforced Polyamide 6
  13. Machining Optimization of HDPE Pipe Using the Taguchi Method and Grey Relational Analysis
  14. Evaluation and Optimization of Electrospun Polyvinyl Alcohol Fibers via Taguchi Methodology
  15. Matrix Degradation during High Speed Extrusion of Polypropylene/Clay Nanocomposites – Influence on Filler Dispersion
  16. Processing of Metallic Pigments in a Co-Rotating Twin-Screw Extruder Studied by Means of Dielectric Analysis and Terahertz Spectroscopy
  17. PPS News
  18. PPS News
  19. Seikei Kakou Abstracts
  20. Seikei-Kakou Abstracts
Heruntergeladen am 22.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.3197/html
Button zum nach oben scrollen