Startseite Preparation and Anti-Fouling Property of Acryloylmorpholine-Grafted PVDF Membrane: The Effect of Cross-Linking Agent
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation and Anti-Fouling Property of Acryloylmorpholine-Grafted PVDF Membrane: The Effect of Cross-Linking Agent

  • X. Shen , J. Liu , Y. Zhao und L. Chen
Veröffentlicht/Copyright: 10. Mai 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Inspired by the hydration capability of hydrogel materials, cross-linked poly(N-acryloylmorpholine) (PACMO) chains were designed into poly(vinylidene fluoride) (PVDF) backbones to synthesize the copolymers (PVDF-g-PACMO) using the radical polymerization method. These copolymers were then cast into the porous membranes via immersion phase inversion. The effects of N,N′-methylenebisacrylamide (MBAA) in the reaction solution on the structure and performance of as-prepared copolymer membranes were evaluated by elemental analysis, X-ray photoelectronic spectroscopy, field emission scanning electron microscopy, water contact angle measurement, protein adsorption and filtration experiment. The grafting degree of PACMO increases with the increase of MBAA amount in the reaction solution, which endows the copolymer membrane with a good hydrophilicity. The protein adsorption and irreversible membrane fouling decrease and then further increase with the elevated grafting degree of PACMO. This result indicates that the anti-fouling property of membrane not only depends on the surface hydrophilicity and but also associates with the grafting structures of PACMO. This work provides a fundamental understanding of various grafting structures governing the performance of anti-fouling properties.


*Correspondence address, Mail address: Li Chen, State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin300387, PRC, E-mail:

References

Ahsani, M., Yegani, R., “Study on the Fouling Behavior of Silica Nanocomposite Modified Polypropylene Membrane in Purification of Collagen Protein”, Chem. Eng. Res. Des., 102, 261273 (2015) 10.1016/j.cherd.2015.06.035Suche in Google Scholar

Bengani, P., Kou, Y. M. and Asatekin, A., “Zwitterionic Copolymer Self-Assembly for Fouling Resistant, High Flux Membranes with Size-Based Small Molecule Selectivity”, J. Membr. Sci., 493, 755765 (2015) 10.1016/j.memsci.2015.07.025Suche in Google Scholar

Bernstein, R., Antóna, E. and Ulbricht, M., “Tuning the Nanofiltration Performance of Thin Film Strong Polyelectrolyte Hydrogel Composite Membranes by Photo-Grafting Conditions”, J. Membr. Sci., 427, 129138 (2013) 10.1016/j.memsci.2012.09.034Suche in Google Scholar

Bradford, M. M., “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding”, Anal. Biochem., 72, 248254 (1976) 10.1016/0003-2697(76)90527-3Suche in Google Scholar

Cai, T., Wang, R., Neoh, K. G. and Kang, E. T., “Functional Poly(vinylidene fluoride) Copolymer Membranes via Surface Initiated Thiolene Click Reactions”, Polym. Chem., 2, 18491858 (2011) 10.1039/c1py00106jSuche in Google Scholar

Chang, Y., Ko, C. Y., Shih, Y. J., Quémener, D., Deratani, A., Wei, T. C., Wang, D. M. and Lai, J. Y., “Surface Grafting Control of PEGylated Poly(vinylidene fluoride) Antifouling Membrane via Surface-initiated Radical Graft Copolymerization”, J. Membr. Sci., 345, 160169 (2009) 10.1016/j.memsci.2009.08.039Suche in Google Scholar

Chen, X., He, Y., Shi, C. C., Fu, W. G., Bi, S. Y., Wang, Z. Y. and Chen, L.Temperatureand pH-responsive Membranes Based on Poly(vinylidene fluoride) Functionalized with Microgels”, J. Membr. Sci., 469, 447457 (2014) 10.1016/j.memsci.2014.07.005Suche in Google Scholar

Chiang, Y. C., Chang, Y., Higuchi, A., Chen, W. Y. and Ruaan, R. C., “Sulfobetaine-Grafted Poly(vinylidene fluoride) Ultrafiltration Membranes Exhibit Excellent Antifouling Property”, J. Membr. Sci., 339, 151159 (2009) 10.1016/j.memsci.2009.04.044Suche in Google Scholar

Chou, W. L., Yang, M. C., “Effect of Take-Up Speed on Physical Properties and Permeation Performance of Cellulose Acetate Hollow Fibers”, J. Membr. Sci., 250, 259267 (2005) 10.1016/j.memsci.2004.10.030Suche in Google Scholar

Hosseinzadeh, M., Bidhendi, G. N., Torabian, A., Mehrdadi, N. and Pourabdullah, M., “A New Flat Sheet Membrane Bbioreactor Hybrid System for Advanced Treatment of Effluent, Reverse Osmosis Pretreatment and Fouling Mitigation”, Bioresour. Technol., 192, 177184 (2015) 10.1016/j.biortech.2015.05.066Suche in Google Scholar PubMed

Kim, D. G., Kang, H., Han, S. S. and Lee, J. C., “Dual Effective Organic/Inorganic Hybrid Star-Shaped Polymer Coatings on Ultrafiltration Membrane for Bioand Oil-Fouling Resistance”, ACS Appl. Mater. Interfaces., 4, 58985906 (2012) 10.1021/am301538hSuche in Google Scholar PubMed

Kumar, M., Lawler, J., “Preparation and Characterization of Negatively Charged Organic-Inorganic Hybrid Ultrafiltration Membranes for Protein Separation”, Sep. Purif. Technol., 130, 112123 (2014) 10.1016/j.seppur.2014.04.027Suche in Google Scholar

La, Y. H., Sooriyakumaran, R., McCloskey, B. D., Allen, R. D., Freeman, B. D. and Al-Rasheed, R., “Enhancing Water Permeability of Fouling-Resistant POSS-PEGM Hydrogels Using ‘Addition-Extraction’ of Sacrificial Additives”, J. Membr. Sci., 401402, 306312 (2012)10.1016/j.memsci.2012.02.021Suche in Google Scholar

Li, L. Y., Chen, S. F., Zheng, J., Ratner, B. D. and Jiang, S. Y., “Protein Adsorption on Oligo(ethylene glycol)-Terminated Alkanethiolate Self-Assembled Monolayers: The Molecular Basis for Nonfouling Behavior”, J. Phys. Chem. B., 109, 29342941 (2005) 10.1021/jp0473321Suche in Google Scholar PubMed

Li, J. H., Li, M. Z., Miao, J., Wang, J. B., Shao, X. S. and Zhang, Q. Q., “Improved Surface Property of PVDF Membrane with Amphiphilic Zwitterionic Copolymer as Membrane Additive”, Appl. Surf. Sci., 258, 63986405 (2012) 10.1016/j.apsusc.2012.03.049Suche in Google Scholar

Liu, J., Shen, X., Zhao, Y. P. and Chen, L., “Acryloylmorpholine-Grafted PVDF Membrane with Improved Protein Fouling Resistance”, Ind. Eng. Chem. Res., 52, 1839218400 (2013) 10.1021/ie403456nSuche in Google Scholar

Madaeni, S. S., Esmaeili, M., Attar Nosrati, S. and Barzin, J., “Preparation and Characterization of PES and PA Composite Membranes for Air Separation at Low Pressures”, Int. Polym. Proc., 28, 281290 (2013) 10.3139/217.2728Suche in Google Scholar

Miao, R., Wang, L., Gao, Z., Mi, N., Liu, T. T., Lv, Y. T. and Wang, X. D., “Polyvinylidene Fluoride/Poly(ethylene-co-vinyl alcohol) Blended Membranes and A Systematic Insight into their Antifouling Properties”, RSC Adv., 5, 3632536333 (2015) 10.1039/C5RA03875HSuche in Google Scholar

Moghareh Abed, M. R., Kumbharkar, S. C., Groth, A. M., Li, K., “Economical Production of PVDF-g-POEM for Use as a Blend in Ppreparation of PVDF Based Hydrophilic Hollow Fibre Membranes”, Sep. Purif. Technol., 106, 4755 (2013) 10.1016/j.seppur.2012.12.024Suche in Google Scholar

Nikolaeva, D., Langner, C., Ghanem, A., Rehim, M. A., Voit, B. and Meier-Haack, J., “Hydrogel Surface Modification of Reverse Osmosis Membranes”, J. Membr. Sci., 476, 264276 (2015) 10.1016/j.memsci.2014.11.051Suche in Google Scholar

Ogawa, N., Kimura, K. and Watanabe, Y., “Membrane Fouling in Nanofiltration/Reverse Osmosis Membranes Coupled with a Membrane Bioreactor Used for Municipal Wastewater Treatment”, Desalin. Water Treat., 18, 292296 (2010) 10.5004/dwt.2010.1795Suche in Google Scholar

Peyravi, M., Rahimpour, A., Jahanshahi, M., Javadi, A. and Shockravi, A., “Tailoring the Surface Properties of PES Ultrafiltration Membranes to Reduce the Fouling Resistance Using Synthesized Hydrophilic Copolymer”, Micropor. Mesopor. Mat., 160, 114125 (2012) 10.1016/j.micromeso.2012.04.036Suche in Google Scholar

Ryś, S., Muca, R., Kołodziej, M., Piątkowski, W., Dürauer, A., Jungbauer, A. and Antos, D., “Design and Optimization of Protein Refolding with Crossflow Ultrafiltration”, Chem. Eng. Sci., 130, 290300 (2015) 10.1016/j.ces.2015.03.035Suche in Google Scholar

Shaffer, D. L., Jaramillo, H., Castrillón, S. R., Lu, X. L. and Elimelech, M., “Post-Fabrication Modification of Forward Osmosis Membranes with a Poly(ethylene glycol) Block Copolymer for Improved Organic Fouling Resistance”. J. Membr. Sci., 490, 209219 (2015) 10.1016/j.memsci.2015.04.060Suche in Google Scholar

Shen, X., Zhao, Y. P., Feng, X., Bi, S. X., Ding, W. B. and Chen, L., “Improved Antifouling Properties of PVDF Membranes Modified with Oppositely Charged Copolymer”, Biofouling, 29, 331343 (2013) 10.1080/08927014.2013.772142Suche in Google Scholar PubMed

Shen, X., Yin, X. B., Zhao, Y. P. and Chen, L., “Antifouling Enhancement of PVDF Membrane Tethered With Polyampholyte Hydrogel Layers”, Polym. Eng. Sci., 55, 13671373 (2015a) 10.1002/pen.24077Suche in Google Scholar

Shen, X., Yin, X. B., Zhao, Y. P. and Chen, L.Improved Protein Fouling Resistance of PVDF Membrane Grafted with the Polyampholyte Layers”, Colloid. Polym. Sci., 293, 12051213 (2015b) 10.1007/s00396-015-3510-2Suche in Google Scholar

Sinha, M. K., Purkait, M. K., “Preparation of Fouling Resistant PSF Flat Sheet UF Membrane Using Amphiphilic Polyurethane Macromolecules”, Desalin. Water. Treat., 355, 155168 (2015)Suche in Google Scholar

Sui, Y., Wang, Z. N., Gao, X. L. and Gao, C. J., “Antifouling PVDF Ultrafiltration Membranes Incorporating PVDF-g-PHEMA Additive via Atom Transfer Radical Graft Polymerizations”, J. Membr. Sci., 413414, 3847 (2012)10.1016/j.memsci.2012.03.055Suche in Google Scholar

Tao, M. M., Liu, F. and Xue, L. X., “Hydrophilic Poly(vinylidene fluoride) (PVDF) Membrane by In Situ Polymerisation of 2-hydroxyethyl methacrylate (HEMA) and Micro-Phase Separation”, J. Mater. Chem., 22, 93119317 (2012) 10.1039/c2jm30695fSuche in Google Scholar

Tripathi, B. P., Dubey, N. C., Choudhury, S. and Stamm, M., “Antifouling and tunable amino functionalized porous membranes for filtration applications”, J. Mater. Chem., 22, 1998119992 (2012) 10.1039/c2jm34172gSuche in Google Scholar

Wang, C. C., Feng, R. R. and Yang, F. L., “Enhancing the Hydrophilic and Antifouling Properties of Polypropylene Nonwoven Fabric Membranes by the Grafting of Poly(N-vinyl-2-pyrrolidone) via the ATRP Method”, J. Colloid. Interf. Sci., 357, 273279 (2011) 10.1016/j.jcis.2011.01.094Suche in Google Scholar PubMed

Wang, P. P., Ma, J., Wang, Z. H., Shi, F. M. and Liu, Q. L., “Enhanced Separation Performance of PVDF/PVP-g-MMT Nanocomposite Ultrafiltration Membrane Based on the NVP-Grafted Polymerization Modification of Montmorillonite (MMT)”, Langmuir, 28, 47764786 (2012) 10.1021/la203494zSuche in Google Scholar PubMed

Xue, J., Chen, L., Wang, H. L., Zhang, Z. B., Zhu, X. L., Kang, E. T. and Neoh, K. G., “Stimuli-Responsive Multifunctional Membranes of Controllable Morphology from Poly(vinylidene fluoride)-graft-Poly[2-(N,N-dimethylamino)ethyl methacrylate Prepared via Atom Transfer Radical Polymerization”, Langmuir, 24, 1415114158 (2008) 10.1021/la801402uSuche in Google Scholar PubMed

Yang, Q., Adrus, N., Tomicki, F. and Ulbricht, M.Composites of Functional Polymeric Hydrogels and Porous Membranes”, J. Mater. Chem., 21, 27832811 (2011) 10.1039/C0JM02234ASuche in Google Scholar

Yuan, T., Meng, J. Q., Hao, T. Y., Zhang, Y. F. and Xu, M. L., “Polysulfone Membranes Clicked with Poly(ethyleneglycol) of High Density and Uniformity for Oil/Water Emulsion Purification: Effects of Tethered Hydrogel Microstructure”, J. Membr. Sci., 470, 112124 (2014) 10.1016/j.memsci.2014.07.013Suche in Google Scholar

Zhang, X. X., Lin, B. B., Zhao, K. Y., Wei, J. F., Guo, J., Cui, W. K., Jiang, S., Liu, D. and Li, J. X., “A Free-Standing Calcium Alginate/Polyacrylamide Hydrogel Nanofiltration Membrane with High Anti-fouling Performance: Preparation and Characterization”, Desalin. Water. Treat., 365, 234241 (2015) 10.1016/j.desal.2015.03.015Suche in Google Scholar

Zhao, Y. H., Qian, Y. L., Pang, D. X., Zhu, B. K. and Xu, Y. Y., “Porous Membranes Modified by Hyperbranched Polymers II. Effect of the Arm Length of Amphiphilic Hyperbranched-Star Polymers on the Hydrophilicity and Protein Resistance of Poly(vinylidene fluoride) Membranes”, J. Membr. Sci., 304, 138147 (2007) 10.1016/j.memsci.2007.07.029Suche in Google Scholar

Zhao, Y. F., Zhu, L. P., Yi, Z., Zhu, B. K. and Xu, Y. Y., “Zwitterionic Hydrogel Thin Films as Antifouling Surface Layers of Polyethersulfone Ultrafiltration Mmembranes Anchored via Reactive Copolymer Additive”, J. Membr. Sci., 470, 148158 (2014) 10.1016/j.memsci.2014.07.023Suche in Google Scholar

Zheng, J., Li, L. Y., Tsao, H. K., Sheng, Y. J., Chen, S. F. and Jiang, S. Y., “Strong Repulsive Forces between Protein and Oligo(ethylene glycol) Self-Assembled Monolayers: A Molecular Simulation Study”, Biophys. J., 89, 158166 (2005) 10.1529/biophysj.105.059428Suche in Google Scholar PubMed PubMed Central

Received: 2015-07-20
Accepted: 2015-11-08
Published Online: 2016-05-10
Published in Print: 2016-05-29

© 2016, Carl Hanser Verlag, Munich

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Regular Contributed Articles
  4. Research and Application of Wireless Temperature Measurement Device in High Temperature Enclosed Environment
  5. Influence on Product Quality by pvT-Optimised Processing in Injection Compression Molding
  6. Effect of Plug Temperature on the Strain and Thickness Distribution of Components Made by Plug Assist Thermoforming
  7. Influence of Processing Parameters and Composition on the Effective Compatibilization of Polypropylene–Poly(ethylene terephthalate) Blends
  8. Impact Modification of Isotactic Polypropylene with Ethylene-Propylene Diene Monomer Rubber
  9. Impact Behavior of Continuous Biaxial Reinforced Composites Based on Bio-Polyamides and Man-Made Cellulose Fibres
  10. Preparation and Anti-Fouling Property of Acryloylmorpholine-Grafted PVDF Membrane: The Effect of Cross-Linking Agent
  11. Fine Filament Formation Behavior of Polymethylpentene and Polypropylene near Spinneret in Melt Blowing Process
  12. Fracture Toughness of PP/EPDM/Nano-Ternary Composites: The Role of Distribution of Inorganic Particles
  13. CO2 Laser Ablation of Microchannel on PMMA Substrate for Effective Fabrication of Microfluidic Chips
  14. A Novel Micro Wall Slip Model Based on Chain Length and Temperature
  15. Electrical and Mechanical Properties of Antistatic Poly(vinyl chloride) Composites Filled with Silver Plated Hollow Glass Microspheres
  16. Prototype System to Study the Effect of Weld Lines on the Performance of Extruded Profiles
  17. Extrudate Swell of High Density Polyethylenes in Slit (Flat) Dies
  18. PPS News
  19. PPS News
  20. Seikei Kakou Abstracts
  21. Seikei-Kakou Abstracts
Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.3150/pdf?lang=de
Button zum nach oben scrollen