Electrofusion Welding Process Optimization Using a Coupled Numerical and Experimental Approach
-
Y. Tillier
, Z. Chebbo , M. Vincent , A. Boujlal and D. Gueugnaut
Abstract
In the water and gas distribution industry, electrofusion is one of the main techniques used for welding polyethylene pipes. In order to help understanding the origin of some defects discovered recently and to optimize and predict the welding quality, we developed a coupled numerical and experimental approach. Our numerical model, that computes a weld quality index based on molecular interdiffusion, is able to reasonably well predict whether welding will occur or not depending on the welding conditions imposed.
References
Bowman, J., “A Review of the Electrofusion Joining Process for Polyethylene Pipe Systems”, Polym. Eng. Sci., 37, 674–691 (1997) 10.1002/pen.11712Search in Google Scholar
Chebbo, Z., Vincent, M., Boujlal, A., Gueugnaut, D. and Tillier, Y., “Numerical and Experimental Study of the Electrofusion Welding Process of Polyethylene Pipes”, Polym. Eng. Sci., 55, 123–131 (2015) 10.1002/pen.23878Search in Google Scholar
Cheron, J. J., Chevrand, J., “Knowledge of Mechanisms Taking Place during Electrofusion of Polyethylene”, International Gas Research Conference, Toronto, Ontario, Canada (1987)Search in Google Scholar
Dufour, D., Meister, E., “Polyethylene Electrofusion Technique: Prediction Model of Welding Quality”, International Gas Research Conference, Tokyo, Japan, p. 232–242 (1989)Search in Google Scholar
Federspiel, E., Gueugnaut, D. and Saint-Royre, D., “Comparaison d’Essais de Soudage sur Eprouvettes Pied d’Éléphant Interprétés au Moyen de la Théorie de la Diffusion des Macromolécules (Report)”, GDF-CERSTA (1987)Search in Google Scholar
Fujikake, M., Fukumura, M. and Kitao, K., “Analysis of the Electrofusion Joining Process in Polyethylene Gas Piping Systems”, Comput. Struct., 64, 939–948 (1997) 10.1016/S0045-7949(97)00008-4Search in Google Scholar
Gent, A. N., Schultz, J., “Effect of Wetting Liquids on the Strength of Adhesion of Viscoelastic Material”, J. Adhes., 3, 281–294 (1972) 10.1080/00218467208072199Search in Google Scholar
Hehn, O., “Analyse Expérimentale et Simulation Thermomécanique du Soudage Bout a Bout de Tubes de Polyéthylène”, Thèse Ecole des Mines de Paris, Sophia Antipolis, France (2006)Search in Google Scholar
Jud, K., Kausch, H. H., “Load Transfer through Chain Molecules after Interpenetration at Interfaces”, Polym. Bull., 1, 697–707 (1979)Search in Google Scholar
Kanninen, M. F., Buczala, G. S., Kuhlman, C. J., Green, S. T., Grogory, S. C., O’Donoghue, P. E. and Mccarthy, M. A., “A Theoretical and Experimental Evaluation of the Long Term Integrity of an Electrofusion Joint”, Plastics Pipes VIII Conference, Koningshof, The Netherlands, p. B2/3.1–10 (1992)Search in Google Scholar
Lavielle, L., Schultz, J., “L'adhésion Polymère-Métal”, Matériaux et Techniques, 6–7, 215–222 (1984)10.1051/mattech/198472060215Search in Google Scholar
Nakashiba, A., Nishimura, H., Inoue, F., Nakagawa, T., Homma, K. and Nakazato, H., “Fusion Simulation of Electrofusion Polyethylene Joints for Gas Distribution”, Polym. Eng. Sci., 33, 1146–1151 (1993) 10.1002/pen.760331708Search in Google Scholar
Nishimura, H., Inoue, F., Nakashiba, A. and Ishikawa, T., “Design of Electrofusion Joints and Evaluation of Fusion Strength Using Fusion Simulation Technology”, Polym. Eng. Sci., 34, 1529–1534 (1994) 10.1002/pen.760342003Search in Google Scholar
Nishimura, H., Nakakura, M., Shishido, S., Masaki, A., Shibano, H. and Nagatani, F., “Effect of Design Factors of EF Joints on Fusion Strength”, 20th Plastic Gas Pipe Symposium, American Gas Association, Arlington, p.99 (1989)Search in Google Scholar
O'Donoghue, P. E., Kanninen, M. F., Green, S. T. and Grigoty, S. C., “Results of a Thermomechanical Analysys Model for Electrofusion Joining of PE Gas Pipes”, 12th Plastic Fuel Gas Pipe Symposium, Boston, USA, p. 341–342 (1991)Search in Google Scholar
Pitman, G. L., “Electrofusion Welding Prediction and Computer-Aided Design of Fittings”, Plastics Pipes VI Conference, University of York, UK, p. 1–7 (1985)Search in Google Scholar
Rosala, G. F., Day, A. J. and Wood, A. S., “A Finite Element Model of the Electrofusion Welding of Thermoplastic Pipes”, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 211, 137–146 (1997) 10.1243/0954408971529629Search in Google Scholar
Saint-Royre, D., Gueugnaut, D. and Reveret, D., “Test Methodology for the Determination of Optimum Fusion Welding Conditions of Polyethylene”, J. Appl. Polym. Sci., 38, 147–162 (1989) 10.1002/app.1989.070380114Search in Google Scholar
Wool, R. P., “A Theory of Crack Healing in Polymers”, J. Appl. Phys., 52, 5953–5963 (1981) 10.1063/1.328526Search in Google Scholar
© 2015, Carl Hanser Verlag, Munich
Articles in the same Issue
- Contents
- Contents
- Regular Contributed Articles
- Analysis of Residual Stresses in Blow Molded Polyethylene Terephthalate Bottles Using Creep Model
- Crystallization Behavior and Mechanical Properties of Nanosilica-Reinforced Isotactic Polypropylene Composites
- The Development of a Multi-Axis Magnetic Roller for Micro-Structure Transfer Embossing Processing Technology
- Simplified Modeling of Convection and Radiation Heat Transfer during Infrared Heating of PET Sheets and Preforms
- Electrofusion Welding Process Optimization Using a Coupled Numerical and Experimental Approach
- Synthesis and Evaluation of Amides as Slip Additives in Polypropylene
- Hole Fraction Dependence on Linear Viscosity of PS, PP and ABS
- Toughening of Polylactide by Bio-Based and Petroleum-Based Thermoplastic Elastomers
- Paste Extrusion and Mechanical Properties of PTFE
- PPS News
- PPS News
Articles in the same Issue
- Contents
- Contents
- Regular Contributed Articles
- Analysis of Residual Stresses in Blow Molded Polyethylene Terephthalate Bottles Using Creep Model
- Crystallization Behavior and Mechanical Properties of Nanosilica-Reinforced Isotactic Polypropylene Composites
- The Development of a Multi-Axis Magnetic Roller for Micro-Structure Transfer Embossing Processing Technology
- Simplified Modeling of Convection and Radiation Heat Transfer during Infrared Heating of PET Sheets and Preforms
- Electrofusion Welding Process Optimization Using a Coupled Numerical and Experimental Approach
- Synthesis and Evaluation of Amides as Slip Additives in Polypropylene
- Hole Fraction Dependence on Linear Viscosity of PS, PP and ABS
- Toughening of Polylactide by Bio-Based and Petroleum-Based Thermoplastic Elastomers
- Paste Extrusion and Mechanical Properties of PTFE
- PPS News
- PPS News