Startseite Development of Antimicrobial Poly(∊-caprolactone)/Poly(lactic acid)/Silver Exchanged Montmorillonite Nanoblend Films with Silver Ion Release Property for Active Packaging Use
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Development of Antimicrobial Poly(∊-caprolactone)/Poly(lactic acid)/Silver Exchanged Montmorillonite Nanoblend Films with Silver Ion Release Property for Active Packaging Use

  • F. Benhacine , A. S. Hadj-Hamou , A. Habi und Y. Grohens
Veröffentlicht/Copyright: 11. August 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Biodegradable PCL/PLA/Ag-MMT nanoblends with a strong antibacterial activity and a silver ion release property were successfully prepared by melt blending process for active packaging use. The presence of silver exchanged montmorillonite and its interaction with PCL/PLA matrix was evidenced by ATR/FTIR. The morphology was investigated by both XRD and TEM analyses. It was suggested the formation of mainly exfoliated structures with a random dispersion of spherical silver nanoparticles within their composite matrices. The thermal and mechanical properties of these nanomaterials were thoroughly investigated and compared to those of the unfilled blends. The potential of the silver ion release from the PCL/PLA/Ag-MMT film was estimated after immersion in water for several periods of time. The results showed an increase of the amount of silver ions released with growing immersion time of PCL/PLA/Ag-MMT nanoblends. Due to the presence of silver nanoparticles in their matrices, PCL/PLA/Ag-MMT nanoblends showed a total bacteria growth inhibition.


* Mail address: Assia Siham Hadj-Hamou, Université des Sciences et de la Technologie Houari Boumediene, Laboratoire des Matériaux Polymères, Département de Chimie Macromoléculaire, Faculté de Chimie, BP 32, El Alia, Alger, Algérie 16111, E-mail:

References

Agarwal, M., Koelling, K. W. and Chalmers, J. J., “Characterization of the Degradation of Polylactic Acid Polymer in a Soil Substrate Environnement”, Biotechnol. Prog., 13, 517526 (1998) 10.1021/bp980015pSuche in Google Scholar

Bin Ahmad, M., Shameli, K., Darroudi, M., Yunus, W. M. Z. W. and Ibrahim, N. A., “Synthesis and Characterization of Silver/Clay Nanocomposites by Chemical Reduction Method”, Am. J. Appl. Sci., 6, 19091914 (2009) 10.3844/ajassp.2009.1909.1914Suche in Google Scholar

Bordes, P., Pollet, E. and Averous, L., “Nano-Biocomposites: Biodegradable Polyester/Nanoclay Systems”, Prog. Polym. Sci., 34, 125155 (2009) 10.1016/j.progpolymsci.2008.10.002Suche in Google Scholar

Busolo, M. A., Fernandez, P., Ocio, M. J. and Lagaron, M. J., “Novel Silver-Based Nanoclay as an Antimicrobial in Polylactic Acid Food Packaging Coatings”, Food Addit. Contam., 27, 16171626 (2010) 10.1080/19440049.2010.506601Suche in Google Scholar

Carretero, M. I., “Clay Minerals and their Beneficial Effects upon Human Health. A Review”, Appl. Clay Sci., 21, 155163 (2002) 10.1016/S0169-1317(01)00085-0Suche in Google Scholar

Chen, C. C., Chueh, J. Y., Tseng, H., Huang, H. M. and Lee, S. Y., “Preparation and Characterization of Biodegradable PLA Polymeric Blends”, Biomaterials, 24, 11671173 (2003) 10.1016/S0142-9612(02)00466-0Suche in Google Scholar

Chen, X., Parker, S. G., Zou, G., Su, W. and Zhang, Q., “Β-Cyclodextrin-Functionalized Silver Nanoparticles for the Naked Eye Detection of Aromatic Isomers”, ACS Nano, 4, 63876394 (2010) 10.1021/nn1016605Suche in Google Scholar PubMed

Damm, C., Munstedt, H., “Kinetic Aspects of the Silver Ion Release from Antimicrobial Polyamide/Silver Nanocomposites”, Appl. Phys. A, 91, 479486 (2008) 10.1007/s00339-008-4434-1Suche in Google Scholar

Damm, C., Munstedt, H. and Rosch, A., “The Antimicrobial Efficacy of Polyamide6/Silver Nano and Microcomposites”, Mater. Chem. Phys., 108, 6166 (2008) 10.1016/j.matchemphys.2007.09.002Suche in Google Scholar

Dirix, Y., Bastiaansen, C., Caseri, W. and Smith, P., “Preparation, Structure and Properties of Uniaxially Oriented Polyethylene-Silver Nanocomposites”, J. Mater. Sci., 34, 38593866 (1999) 10.1023/A:1004614604641Suche in Google Scholar

Dizman, B., Badger, J. C., Elasri, M. O. and Mathias, L. J., “Antibacterial Fluoromicas: A Novel Delivery Medium”, Appl. Clay Sci., 38, 5763 (2007) 10.1016/j.clay.2007.01.002Suche in Google Scholar

Dubois, P., Paul, M., Delcourt, A., Alexandre, M. and Degée, M., “Polylactide/Montmorillonite Nanocomposites Study of the Hydrolytic Degradation”, Polym. Degrad. Stabil., 87, 535542 (2005) 10.1016/j.polymdegradstab.2004.10.011Suche in Google Scholar

Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N. and Kim, J. O., “A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia Coli and Staphylococcus Aureus”, J. Biomed. Mater. Res., 52, 662668 (2000) 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3Suche in Google Scholar

Fernandez, A., Soriano, E., Hernández-Muñoz, P. and Gavara, R., “Migration of Antimicrobial Silver From Composites of Polylactide With Silver Zeolites”, J. Food Sci., 75, 186193 (2010) 10.1111/j.1750-3841.2010.01549.xSuche in Google Scholar

Fortunati, E., Peltzer, M., Armentano, I., Jiménez, A. and Kenny, A. J. M., “Combined Effects of Cellulose Nanocrystals and Silver Nanoparticles on the Barrier and Migration Properties of PLA Nano-Biocomposites”, J. Food Eng., 118, 117124 (2013) 10.1016/j.jfoodeng.2013.03.025Suche in Google Scholar

Fukushima, K., Tabuani, D. and Camino, G., “Nanocomposites of PLA and PCL Based on Montmorillonite and Sepiolite”, Mater. Sci. Eng. C., 29, 14331441 (2009) 10.1016/j.msec.2008.11.005Suche in Google Scholar

Garlotta, D., “A Literature Review of Poly (Lactic Acid)”, J. Polym. Environ., 9, 6384 (2001) 10.1023/A:1020200822435Suche in Google Scholar

Girase, B., Depan, D., Shah, J. S., Xu, W. and Misra, R. D. K., “Silver-Clay Nanohybrid Structure for Effective and Diffusion-Controlled Antimicrobial Activity”, Mater. Sci. Eng. C, 31, 17591766 (2011) 10.1016/j.msec.2011.08.007Suche in Google Scholar

Harada, M., Lida, K., Okamoto, K., Hayashi, H. and Irano, K., “Reactive Compatibilization of Biodegradable Poly (Lactide)/Poly(∊-Caprolactone) Blends With Reactive Processing Agents”, Polym. Eng. Sci., 48, 13591368 (2008) 10.1002/pen.21088Suche in Google Scholar

Hoidy, W. H., Jaffar Al-Mulla, E. A. and Al-Janab, K. W., “Mechanical and Thermal Properties of PLLA/PCL Modified Clay Nanocomposites”, J. Polym. Environ., 18, 608616 (2010) 10.1007/s10924-010-0240-xSuche in Google Scholar

Hundáková, M., Valášková, M., Tomášek, V., Pazdziora, E. and Matějová, K., “Silver and/Or Copper Vermiculites and their Antibacterial Effect”, Acta Geodyn. Geomater., 10, 97104 (2013) 10.13168/AGG.2013.0009Suche in Google Scholar

Jain, S., Reddy, M. M., Mohanty, A. K., Misra, M. and Ghosh, A. K., “A New Biodegradable Flexible Composite Sheet From Poly(Lactic Acid)/Poly(E-Caprolactone) Blends and Micro-Talc”, Macromol. Mater. Eng., 295, 750762 (2010) 10.1002/mame.201000063Suche in Google Scholar

Jokar, M., Abdulrahman, R., “Study of Silver Ion Migration From Melt Blended and Layered Deposited Silver Polyethylene Nanocomposite into Food Simulants and Apple Juice”, Food Addit. Contam. Part A, 31, 734742 (2014) 10.1080/19440049.2013.878812Suche in Google Scholar

Levin, C. S., Hoffman, T. A., Ali, A. T., Kelly, E., Morosan, P., Nordlander, K. H., Whitmire, N. J. and Halas, N., “Magnetic-Plasmonic Core-Shell Nanoparticles”, ACS Nano, 3, 13791388 (2009) 10.1021/nn900118aSuche in Google Scholar

Li, H., Huneault, M. A., “Effect of Nucleation and Plasticization on the Crystallization of Poly(Lactic Acid)”, Polymer, 48, 68556866 (2007) 10.1016/j.polymer.2007.09.020Suche in Google Scholar

Liu, S., Huang, W., Chen, S., Avivi, S. and Gendanken, A., “Synthesis of X-Ray Amorphous Silver Nanoparticles by the Pulse Sonoelectrochemical Method”, J. Non-Cryst. Solids, 283, 231236 (2001) 10.1016/S0022-3093(01)00362-3Suche in Google Scholar

Magana, S. M., Quintana, P., Aguilar, D. H., Toledo, J. A., Angeles-Chavez, C., Cortes, M. A., Leon, L., Freile-Pelegrin, Y., Lopez, T. and Torres-Sanchez, R. M., “Antibacterial Activity of Montmorillonites Modified with Silver”, J. Mol. Catal. A. Chem., 281, 192199 (2008) 10.1016/j.molcata.2007.10.024Suche in Google Scholar

Marambio-Jones, C., Choek, E. M. V., “A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment”, J. Nanopart. Res., 12, 15311551 (2010) 10.1007/s11051-010-9900-ySuche in Google Scholar

Mcneill, I. C., Leiper, H. A., “Degradation Studies of Some Polyesters and Polycarbonates-2. Polylactide: Degradation under Isothermal Conditions, Thermal Degradation Mechanism and Photolysis of the Polymer”, Polym. Degrad. Stab., 11, 309326 (1985) 10.1016/0141-3910(85)90035-7Suche in Google Scholar

Praus, P., Turicová, M. and Klementová, M., “Preparation of Silver-Montmorillonite Nanocomposites by Reduction with Formaldehyde and Borohydride”, J. Braz. Chem. Soc., 20, 13511357 (2009) 10.1590/S0103-50532009000700021Suche in Google Scholar

Rasal, R. M., Janorkar, A. V. and Hirt, D. E., “Poly(lactic acid) Modifications”, Prog. Polym. Sci., 35, 338356 (2010) 10.1016/j.progpolymsci.2009.12.003Suche in Google Scholar

Russel, A. D., Hugo, W. B., “Antimicrobial Activity and Action of Silver”, Prog. Med. Chem., 31, 351370 (1994) 10.1016/s0079-6468(08)70024-9Suche in Google Scholar

Shameli, K., Ahmad, M. B., Zargar, M., Yunus, W. M. Z. W., Rustaiyan, A. and Ibrahim, N. A., “Synthesis of Silver Nanoparticles in Montmorillonite and their Antibacterial Behavior”, Int. J. Nanomed., 6, 581590 (2011) 10.2147/IJN.S17112Suche in Google Scholar PubMed PubMed Central

Shameli, K., Ahmad, M. B., Zargar, M., Yunus, W. M. Z. W. and Ibrahim, N. A., “Fabrication of Silver Nanoparticles Doped in the Zeolite Framework and Antibacterial Activity”, Int. J. Nanomed., 6, 331341 (2011) 10.2147/IJN.S16964Suche in Google Scholar PubMed PubMed Central

Signori, A. M., Santos, K. D. O., Eising, R., Albuquerque, B. L., Giacomelli, F. C. and Domingos, J. B., “Formation of Catalytic Silver Nanoparticles Supported on Branched Polyethyleneimine Derivatives”, Langmuir26, 1777217779 (2010) 10.1021/la103408sSuche in Google Scholar PubMed

Siparsky, G. L., Voorhees, K. J., Dorgan, J. R. and Schilling, K., “Water Transport in Poly(lactic acid), Poly(lactic acid-co-caprolactone) Copolymers, and Poly(lactic acid)/Polyethylene Glycol Blends”, J. Environ. Polym. Degrad., 5, 125136 (1997)Suche in Google Scholar

Temgire, M. K., Joshi, S. S., “Optical and Structural Studies of Silver Nanoparticles”, Radiat. Phys. Chem., 71, 10391044 (2004) 10.1016/j.radphyschem.2003.10.016Suche in Google Scholar

Todo, M., Park, S. D., Takayama, T. and Arakawa, K., “Fracture Micromechanisms of Bioabsorbable PLLA/PCL Polymer Blends”, Eng. Frac. Mech., 74, 18721883 (2007) 10.1016/j.engfracmech.2006.05.021Suche in Google Scholar

Top, A., Ulku, S., “Silver, Zinc, and Copper Exchange in a Na-Clinoptilolite and Resulting Effect on Antibacterial Activity”, Appl. Clay Sci., 27, 1319 (2004) 10.1016/j.clay.2003.12.002Suche in Google Scholar

Tricoli, A., Pratsinis, S. E., “Dispersed Nanoelectrode Devices”, Nat. Nanotechnol., 5, 5460 (2010) 10.1038/nnano.2009.349Suche in Google Scholar PubMed

Tsuji, H., Yamada, T., Suzuki, M. and Itsuno, S., “Blends of Aliphatic Polyesters. Part 7. Effects of Poly (L-lactide-co-∊-caprolactone) on Morphology, Structure, Crystallization, and Physical Properties of Blends of Poly (L-lactide) and Poly(∊-caprolactone)”, Polym. Int., 52, 269275 (2003) 10.1002/pi.1093Suche in Google Scholar

Tudose, M., Munteanu, C., Marinescu, G., Culita, D. and Ionita, P., “The Influence of Redox Chemical Surface Treatments on Silver Nanoparticles”, Dig. J. Nanomater. Bios., 8, 17611770 (2013)Suche in Google Scholar

Xie, Y., Ye, R. and Liu, H., “Synthesis of Silver Nanoparticles in Reverse Micelles Stabilized by Natural Biosurfactant”, Colloids Surf., A, 279, 175178 (2006) 10.1016/j.colsurfa.2005.12.056Suche in Google Scholar

Yeh, J. T., Wu, C. J., Tsou, C. H., Chai, W. L., Chow, J. D., Huang, C. Y., Chen, K. N. and Wu, C. S., “Study on the Crystallization, Miscibility, Morphology, Properties of Poly(lactic acid)/Poly(∊-caprolactone) Blends”, Polym. Plast. Technol. Eng., 48, 571578 (2009) 10.1080/03602550902824390Suche in Google Scholar

Zapata, P. A., Tamayo, L., Páez, M., Cerda, E., Azócar, I. and Rabagliati, F. M., “Nanocomposites Based on Polyethylene and Nanosilver Particles Produced by Metallocenic “In Situ” Polymerization: Synthesis, Characterization, and Antimicrobial Behavior”, Eur. Polym. J., 47, 15411549 (2011) 10.1016/j.eurpolymj.2011.05.008Suche in Google Scholar

Received: 2015-02-09
Accepted: 2015-05-03
Published Online: 2015-08-11
Published in Print: 2015-08-14

© 2015, Carl Hanser Verlag, Munich

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.3087/html
Button zum nach oben scrollen