Home Mechanical Properties, Morphologies and Thermal Decomposition Kinetics of Poly(lactic acid) Toughened by Waste Rubber Powder
Article
Licensed
Unlicensed Requires Authentication

Mechanical Properties, Morphologies and Thermal Decomposition Kinetics of Poly(lactic acid) Toughened by Waste Rubber Powder

  • J.-N. Yang , S.-B. Nie , G.-X. Ding , Z.-F. Wang , J.-S. Gao and J.-B. Zhu
Published/Copyright: August 11, 2015
Become an author with De Gruyter Brill

Abstract

To improve the impact resistance and reduce the product cost, poly(lactic acid) (PLA) blends containing varying mass fraction of waste rubber powder (WRP) were fabricated via melt compounding. The effects of WRP contents on the mechanical properties, morphologies and thermal stabilities of PLA/WRP blends were investigated. Mechanical tests showed that WRP could increase the ductilities of PLA, leading to the significant improvements in the impact toughness and elongation at break. In contrast, the tensile strength was just heightened slightly, while elastic modulus declined gradually. Scanning electron microscopy observations indicated that well bonded interfacial morphologies were formed between PLA and WRP. From the results of thermo gravimetric analysis, WRP decreased the onset and peak decomposition temperatures of PLA phase and increased the char contents of samples significantly. Average activation energies of samples were increased first and then decreased with increasing WRP. Finally, theoretical lifetimes of PLA/WRP blends were also estimated.


* Mail address: Jinian Yang, School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, PRC, E-mail:

References

Adhikari, B., De, D. and Maiti, S., “Reclamation and Recycling of Waste Rubber”, Prog. Polym. Sci., 25, 909948 (2000) 10.1016/S0079-6700(00)00020-4Search in Google Scholar

Anderson, K. S., Hillmyer, M. A., “The Influence of Block Copolymer Microstructure on the Toughness of Compatibilized Polylactide/Polyethylene Blends”, Polymer, 45, 88098823 (2004) 10.1016/j.polymer.2004.10.047Search in Google Scholar

Anderson, K. S., Lim, S. H. and Hillmyer, M. A., “Toughening of Polylactide by Melt Blending with Linear Low-Density Polyethylene”, J. Appl. Polym. Sci., 89, 37573768 (2003) 10.1002/app.12462Search in Google Scholar

Anderson, K. S., Schreck, K. M. and Hillmyer, M. A., “Toughening Polylactide”, Polym. Rev., 48, 85108 (2008) 10.1080/15583720701834216Search in Google Scholar

Bao, C., Guo, Y., Song, L. and Hu, Y., “Poly(vinyl alcohol) Nanocomposites Based on Graphene and Graphite Oxide. A Comparative Investigation of Property and Mechanism”, J. Mater. Chem., 21, 1394213950 (2011) 10.1039/c1jm11662bSearch in Google Scholar

Broz, M. E., Vanderhart, D. L. and Washburn, N. R., “Structure and Mechanical Properties of Poly(d,l-lactic acid)/Poly(e-caprolactone) Blends”, Biomater., 24, 41814190 (2003) 10.1016/S0142-9612(03)00314-4Search in Google Scholar PubMed

Doyle, C. D., “Kinetic Analysis of Thermogravimetric Data”, J. Appl. Polym. Sci., 5, 285292 (1961) 10.1002/app.1961.070051506Search in Google Scholar

El-Nemr, K. F., Khalil, A. M., “Gamma Irradiation of Treated Waste Rubber Powder and its Composites with Waste Polyethylene”, J. Vinyl Add. Tech., 17, 5863 (2011) 10.1002/vnl.20245Search in Google Scholar

Fan, Y. J., Nishida, H., Shirai, Y., Tokiwa, Y. and Endo, T., “Thermal Degradation Behavior of Poly (lactic acid) Stereocomplex”, Polym. Degrad. Stab., 86, 197208 (2004) 10.1016/j.polymdegradstab.2004.03.001Search in Google Scholar

Flynn, J. H., Wall, L. A., “General Treatment of the Thermogravimetry of Polymers”, J. Res. Nat. Bur. Stand. A. Physics and Chemistry, 70, 487523 (1966a) 10.6028/jres.070A.043Search in Google Scholar PubMed PubMed Central

Flynn, J. H., Wall, L. A., “A Quick Direct Method for the Determination of Activation Energy from Thermogravimetric Data”, J. Polym. Sci., 4, 323328 (1966b) 10.1002/pol.1966.110040504Search in Google Scholar

Ghaisas, S. S., Kale, D. D., Kim, J. G. and Jo, B. W., “Blends of Plasticized Poly(vinyl chloride) and Waste Flexible Poly(vinyl chloride) with Waste Nitrile Rubber Powder”, J. Appl. Polym. Sci., 91, 15521558 (2004) 10.1002/app.13137Search in Google Scholar

Hashima, K., Nishitsuji, S. and Inoue, T., “Structure-Properties of Super-Tough PLA Alloy with Excellent Heat Resistance”, Polymer, 51, 39343939 (2010) 10.1016/j.polymer.2010.06.045Search in Google Scholar

Hassan, M. M., Badway, N. A., Gamal, A. M., Elnaggar, M. Y. and Hegazy, E. A., “Studies on Mechanical, Thermal and Morphological Properties of Irradiated Recycled Polyamide and Waste Rubber Powder Blends”, Nucl. Instrum. Methods Phys. Res., Sect. B, 268, 14271434 (2010)10.1016/j.nimb.2010.01.021Search in Google Scholar

Ho, C. H., Wang, C. H., Lin, C. I. and Lee, Y. D., “Synthesis and Characterization of TPO-PLA Copolymer and its Behavior as Compatibilizer for PLA/TPO Blends”, Polymer, 49, 39023910 (2008) 10.1016/j.polymer.2008.06.054Search in Google Scholar

Jiang, L., Wolcott, M. P. and Zhang, J., “Study of Biodegradable Polylactide/Poly(butylene adipate-co-terephthalate) Blends”, Biomacromolecules, 7, 199207 (2006) 10.1021/bm050581qSearch in Google Scholar PubMed

Kim, H., Abdala, A. A. and Macosko, C. W., “Graphene/Polymer Nanocomposites”, Macromolecules, 43, 65156530 (2010) 10.1021/ma100572eSearch in Google Scholar

Kissinger, H. E., “Reaction Kinetics in Differential Thermal Analysis”, Anal. Chem., 29, 17021706 (1957) 10.1021/ac60131a045Search in Google Scholar

Lee, S. H, Shanmugharaj, A. M., Sridharc, V., Zhang, Z. X. and Kim, J. K., “Preparation and Characterization of Polypropylene and Waste Tire Powder Modified by Allylamine Blends”, Polym. Adv. Tech., 20, 620625 (2009) 10.1002/pat.1307Search in Google Scholar

Lee, S. H., Zhang, Z. X., Xu, D., Chung, D., Oh, J. G. and Kim, J. K., “Dynamic Reaction Involving Surface Modified Waste Ground Rubber Tire Powder/Polypropylene”, Polym. Eng. Sci., 49, 168176 (2009) 10.1002/pen.21236Search in Google Scholar

Li, Y., Shimizu, H., “Toughening of Polylactide by Melt Blending with a Biodegradable Poly(ether)Urethane Elastomer”, Macromol. Biosci., 7, 921928 (2007) 10.1002/mabi.200700027Search in Google Scholar PubMed

Li, Y., Zhang, Y. and Zhang, Y. X., “Morphology and Mechanical Properties of HDPE/SRP/Elastomer Composites: Effect of Elastomer Polarity”, Polym. Test., 23, 8390 (2004) 10.1016/S0142-9418(03)00065-5Search in Google Scholar

Ma, P., Hristova-Bogaerds, D. G., Goossens, J. G. P., Spoelstra, A. B., Zhang, Y. and Lemstra, P. J., “Toughening of Poly(lactic acid) by Ethylene-Co-Vinyl Acetate Copolymer with Different Vinyl Acetate Contents”, Eur. Polym. J., 48; 146154 (2012) 10.1016/j.eurpolymj.2011.10.015Search in Google Scholar

Meszaros, L., Barany, T. and Czvikovszky, T., “EB-Promoted Recycling of Waste Tire Rubber with Polyolefins”, Radiat. Phys. Chem., 81, 13571360 (2012) 10.1016/j.radphyschem.2011.11.058Search in Google Scholar

Nampoothiri, K. M., Nair, N. R. and John, R. P., “An Overview of the Recent Developments in Polylactide (PLA) Research”, Bioresour. Technol., 101: 84938501 (2010) 10.1016/j.biortech.2010.05.092Search in Google Scholar PubMed

Noda, I., Satkowski, M. M., Dowrey, A. E. and Marcott, C., “Polymer Alloys of Nodax Copolymers and Poly(lactic acid)”, Macromol. Biosci., 4, 269275 (2004) 10.1002/mabi.200300093Search in Google Scholar PubMed

Ouyang, C. F., Gao, Q., Shi, Y. T. and Shan, X. Q., “Compatibilizer in Waste Tire Powder and Low-Density Polyethylene Blends and the Blends Modified Asphalt”, J. Appl. Polym. Sci., 123, 485492 (2012) 10.1002/app.34634Search in Google Scholar

Ozawa, T., “Kinetic Analysis of Derivative Curves in Thermal Analysis”, J. Therm. Anal., 2, 301324 (1970) 10.1007/BF01911411Search in Google Scholar

Semba, T., Kitagawa, K., Ishiaku, U. S. and Hamada, H., “The Effect of Crosslinking on the Mechanical Properties of Polylactic Acid/Polycaprolactone Blends”, J. Appl. Polym. Sci., 101, 18161825 (2006) 10.1002/app.23589Search in Google Scholar

Shanmugharaj, A. M., Kim, J. K. and Ryu, S. H., “UV Surface Modification of Waste Tire Powder: Characterization and its Influence on the Properties of Polypropylene/Waste Powder Composites”, Polym. Test., 24, 739745 (2005) 10.1016/j.polymertesting.2005.04.006Search in Google Scholar

Sonnier, R., Leroy, E., Clerc, L., Bergeret, A., Lopez-Cuesta, J. M., Bretelle, A. S. and Ienny, P., Compatibilizing Thermoplastic/Ground Tyre Rubber Powder Blends: Efficiency and Limits”, Polym. Test., 27, 901907 (2008) 10.1016/j.polymertesting.2008.07.003Search in Google Scholar

Sonnier, R., Leroy, E., Clerc, L., Bergeret, A. and Lopez-Cuesta, J. M., “Polyethylene/Ground Tyre Rubber Blends: Influence of Particle Morphology and Oxidation on Mechanical Properties”, Polym. Test., 26, 274281 (2007) 10.1016/j.polymertesting.2006.10.011Search in Google Scholar

Su, Z. Z., Li, Q. Y., Liu, Y. J., Hu, G. H. and Wu, C. F., “Compatibility and Phase Structure of Binary Blends of Poly(lactic acid) and Glycidyl Methacrylate Grafted Poly(ethylene octane)”, Eur. Polym. J., 45, 24282433 (2009) 10.1016/j.eurpolymj.2009.04.028Search in Google Scholar

Tan, K. L., Li, C. X., Meng, H. and Wang, Z. H., “Preparation and Characterization of Thermoplastic Elastomer of Poly(yinyl chloride) and Chlorinated Waste Rubber”, Polym. Test., 28, 27 (2009) 10.1016/j.polymertesting.2008.08.003Search in Google Scholar

Toop, D. J., “Theory of Life Testing and Use of Thermogravimetric Analysis to Predict the Thermal Life of Wire Enamels”, IEEE Transactions on Electrical Insulation, 6, 214 (1971) 10.1109/TEI.1971.299128Search in Google Scholar

Wang, R., Wang, S., Zhang, Y., Wan, C. and Ma, P., “Toughening Modification of PLLA/PBS Blends via in situ Compatibilization”, Polym. Eng. Sci., 49, 2633 (2009) 10.1002/pen.21210Search in Google Scholar

Yokohara, T., Yamaguchi, M., “Structure and Properties for Biomassbased Polyester Blends of PLA and PBS”, Eur. Polym. J., 44, 677685 (2008) 10.1016/j.eurpolymj.2008.01.008Search in Google Scholar

Zhang, H. L., Liu, N. N., Ran, X. H., Han, C. Y., Han, L. J., Zhuang, Y. G. and Dong, L. S., “Toughening of Polylactide by Melt Blending with Methyl Methacrylate-Butadiene-Styrene Copolymer.”, J. Appl. Polym. Sci., 125, E550e561 (2012) 10.1002/app.36952Search in Google Scholar

Zhang, N., Wang, Q., Ren, J. and Wang, L., “Preparation and Properties of Biodegradable Poly(lactic acid)/Poly(butylene adipate-coterephthalate) Blend with Glycidyl Methacrylate as Reactive Processing Agent”, J. Mater. Sci., 44, 250256 (2009) 10.1007/s10853-008-3049-4Search in Google Scholar

Received: 2014-11-28
Accepted: 2015-04-12
Published Online: 2015-08-11
Published in Print: 2015-08-14

© 2015, Carl Hanser Verlag, Munich

Downloaded on 29.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.3049/html
Scroll to top button