Home Lithium Ion Conduction in PVdC-co-AN Based Polymer Blend Electrolytes Doped with Different Lithium Salts
Article
Licensed
Unlicensed Requires Authentication

Lithium Ion Conduction in PVdC-co-AN Based Polymer Blend Electrolytes Doped with Different Lithium Salts

  • C. Subbu , S. Rajendran , K. Kesavan and C. M. Mathew
Published/Copyright: August 11, 2015
Become an author with De Gruyter Brill

Abstract

Polymer electrolytes prepared by the complexation of lithium salts with poly(ethylene oxide) (PEO) and poly(vinylidene chloride-co-acrylonitrile) (PVdC-co-AN) will be of great use as separators in lithium polymer batteries. The amorphous nature of the blend electrolyte shows that the conductivity increases by the addition of lithium salts. The presence of C≡N and C=N in PVdC-co-AN are confirmed from the Fourier transform infrared studies. Among the various lithium salts studied, lithium trifluoro methane sulfonoimide [LiN(CF3SO2)2] based electrolyte exhibits the highest ionic conductivity of the order of 0.265 × 10−5 Scm−1 at room temperature. The sample having a maximum ionic conductivity PEO(80 wt%)/PVdC-co-AN(20 wt%)/LiN(CF3SO2)2(8 wt%) is supported by the lower optical band gap in UV-Visible analysis and low intensity in luminescence studies. Two and three dimensional topographic images of the above sample reveal the presence of micropores. Thermal stability of the prepared electrolytes is studied by thermo gravimetric/differential thermal analysis. Using differential scanning calorimetric analysis, the minimum glass transition temperature (30°C) is observed for the sample doped with LiN(CF3SO2)2. The cyclic voltammetric studies reveal the strong capacitive behavior of the prepared polymer electrolytes. The electrochemical stability windows for the prepared samples are observed using linear sweep voltammetry.


* Mail address: Somasundaram Rajendran, School of Physics, Alagappa University, Karaikudi, Tamilnadu-630004, India, E-mail:

References

Alexander, A., Teran, H., Tang, M., Mullin, S. A. and Balsara, N. P., “Effect of Molecular Weight on Conductivity of Polymer Electrolytes”, Solid State Ionics., 203, 1821 (2011) 10.1016/j.ssi.2011.09.021Search in Google Scholar

Aravindan, V., Vickraman, P. and Prem Kumar, T., “Polyvinylidene Fluoride-Hexafluoropropylene (PVDF-HFP)-Based Composite Polymer Electrolyte Containing LiPF3(CF3CF2)3”, J. Non-Cryst. Solids., 354, 34513457 (2008) 10.1016/j.jnoncrysol.2008.03.009Search in Google Scholar

Austin Suthanthiraraj, S., Joice Sheeba, D., “Structural Investigation on PEO-Based Polymer Electrolytes Dispersed with Al2O3 Nanoparticles”, Ionics, 13, 447450 (2007)10.1007/s11581-007-0131-xSearch in Google Scholar

Berthier, C., Gorecki, W., Miner, M., Armand, M. B., Chabagno, J. M. and Rigaud, P., “Microscopic Investigation of Ionic Conductivity in Alkali Metal Salts-Poly(ethylene oxide) Adducts”, Solid State Ionics., 11, 9195 (1983) 10.1016/0167-2738(83)90068-1Search in Google Scholar

Chintapalli, S., Frech, R., “Kinetic Effects in the Ionic Association of Poly(ethylene oxide)-Lithium Triflate Complexes”, Electrochim. Acta, 43, 13951400 (1997) 10.1016/S0013-4686(97)10074-3Search in Google Scholar

Druger, S. D., Nitzan, A. and Ratner, M. A., “Dynamic Bond Percolation Theory: A Microscopic Model for Diffusion in Dynamically Disordered Systems. I. Definition and One-Dimensional Case”, J. Chem. Phy., 70, 31333142 (1983) 10.1063/1.446144Search in Google Scholar

Fenton, D. E., Parker, J. M. and Wright, P. V., “Complexes of Alkali Metal Ions with Poly(ethylene oxide)”, Polymer, 14, 589589 (1973) 10.1016/0032-3861(73)90146-8Search in Google Scholar

Helan Flora, X., Ulaganathan, M., Babu, R. S. and Rajendran, S., “Evaluation of Lithium Ion Conduction in PAN/PMMA-Based Polymer Blend Electrolytes for Li-Ion Battery Applications”, Ionics, 18, 731736 (2012)10.1007/s11581-012-0690-3Search in Google Scholar

Hodge, R. M., Edward, G. H. and Simon, G. P., “Water Absorption and States of Water in Semicrystalline Poly(vinyl alcohol) Films”, Polymer, 37, 13711376 (1990) 10.1016/0032-3861(96)81134-7Search in Google Scholar

Horcas, I., Fernandez, R., Rodriguez, J. M. G, Colchero, J., Herrero, J. G. and Baro, A. M., “WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology”, Rev. Sci. Instrum, 78, 013705 (2007) 10.1063/1.2432410Search in Google Scholar PubMed

Immanuel Selvaraj, I., Chaklanobis, S. and Chandrasekhar, V., “Conductivity Studies on Poly(methoxyethoxyethylmethacrylate)-Lithium Salt Complexes”, J. Electrochem. Soc., 142, 366370 (1995) 10.1149/1.2044013Search in Google Scholar

Jacob, M. M. E., Arof, A. K., “FTIR Studies of DMF Plasticized Polyvinyledene Fluoride Based Polymer Electrolytes”, Electrochim. Acta, 45, 17011706 (2000) 10.1016/S0013-4686(99)00316-3Search in Google Scholar

Jian, L., Jingyu, X., Qins, S. and Xiaozhen, T., “Microporous Polymer Electrolyte Based on PVDF-PEO”, Chinese Sci. Bull., 50, 368370 (2005) 10.1007/BF02897580Search in Google Scholar

Kesavan, K., Mathew, C. M. and Rajendran, S., “Lithium Ion Conduction and Ion-Polymer Interaction in Poly(vinyl pyrrolidone) Based Electrolytes Blended with Different Plasticizers”, Chinese Chem. Lett., 28, 14281434 (2014) 10.1016/j.cclet.2014.06.005Search in Google Scholar

Kesavan, K., Rajendran, S. and Mathew, C. M., “Studies on Poly(vinyl pyrrolidone) Based Solid Polymer Blend Electrolytes Complexed with Various Lithium Salts”, Polym. Sci. Ser. B., 56, 520529 (2014) 10.1134/S1560090414040034Search in Google Scholar

Kim, Y.-T., Smotkin, E. S., “The Effect of Plasticizer on Transport and Electrochemical Properties of PEO Based Electrolytes for Lithium Rechargeable Batteries”, Solid State Ionics, 149, 2937 (2002) 10.1016/S0167-2738(02)00130-3Search in Google Scholar

Krimm, S., Liang, C. Y., “Infrared Spectra of High Polymers. IV. Polyvinyl Chloride, Polyvinylidene Chloride, and Copolymers”, J. Polym. Sci., 22, 95112 (1956) 10.1002/pol.1956.1202210012Search in Google Scholar

Kulasekarapandian, K., Jayanthi, S., Muthukumari, A., Arulsankar, A. and Sundaresan, B., “Preparation and Characterization of PVC-PEO Based Polymer Blend Electrolytes Complexed with Lithium Perchlorate”, Int. J. Eng. Res. Develop., 5, 3039 (2013)Search in Google Scholar

Macdonald, J. R., Johnson, W. B.: “Impedance Spectroscopy: Theory, Experiment and Applications”, Wiley, New Jersey (2005)Search in Google Scholar

Magonov, S. N., Reneker, D., “Characterization of Polymer Surfaces with Atomic force Microscopy”, Ann. Revs. Mat. Sci., 27, 175222 (1997) 10.1146/annurev.matsci.27.1.175Search in Google Scholar

Magonov, S. N., Whangbo, M. H: Surface Analysis with STM and AFM. VCH Publishers, Weinheim, Germany (1996)10.1002/9783527615117Search in Google Scholar

Miyoto, T., Shibayama, K., “Free-Volume Model for Ionic Conductivity in Polymers”, J. Appl. Phys., 44, 53725376 (1973) 10.1063/1.1662158Search in Google Scholar

Nitzan, A., Ratner, M. A., “Conduction in Polymers: Dynamic Disorder Transport”, J. Chem. Phy., 98, 17651775 (1994) 10.1021/j100058a009Search in Google Scholar

Oliveira, J. E., Mattoso, L. H. C., Orts, W. J. and Medeiros, E. S., “Structural and Morphological Characterization of Micro and Nanofibers Produced by Electrospinning and Solution Blow Spinning: A Comparative Study”, Adv. Mat. Sci. Eng. (2013) 10.1155/2013/409572Search in Google Scholar

Oshea, M. L., Morterra, C. and Low, M. J. D., “Spectroscopic Studies of Carbon XX. The Pyrolysis of Polyvinylidene Chloride and of Saran”, Mater. Chem. Phys., 27, 155179 (1991) 10.1016/0254-0584(91)90114-ASearch in Google Scholar

Pankove, J. I.: Optical Processes in Semiconductors, Prentice-Hall, Englewood Cliffs (1971)Search in Google Scholar

Papke, B. L., Ratner, M. A. and Shriver, D. F., “Vibrational Spectroscopic Determination of Structure and Ion Pairing in Complexes of Poly(ethylene oxide) with Lithium Salts”, J. Electrochem. Soc., 129, 14291434 (1982) 10.1149/1.2124179Search in Google Scholar

Park, U. S., Hong, Y. J. and Oh, S. M., “Fluorescence Spectroscopy for Local Viscosity Measurements in Polyacrylonitrile (pan)-Based Polymer Gel Electrolytes”, Electrochim. Acta, 41, 849855 (1996) 10.1016/0013-4686(95)00372-XSearch in Google Scholar

Rajendran, S., Shanthi Bama, V., “A Study on the Effect of Various Plasticizers in Poly(vinyl acetate)-Poly(methyl methacrylate) Based Gel Electrolytes”, J. Non-Cryst. Solids, 356, 27642768 (2010) 10.1016/j.jnoncrysol.2010.09.042Search in Google Scholar

Ramesh, S., Arof, A. K., “Structural, Thermal and Electrochemical Cell Characteristics of Poly(vinyl chloride)-Based Polymer ElectrolytesJ. Power Sources, 99, 4147 (2001) 10.1016/S0378-7753(00)00690-XSearch in Google Scholar

Scrosati, B., Vincent, C. A., “Polymer Electrolytes: The Key to Lithium Polymer Batteries”, MRS Bull., 25, 2830 (2000) 10.1557/mrs2000.15Search in Google Scholar

Silva, M. M., Nunes, S. C., Barbosa, P. C., Evans, A., De Zea Bermudez, V., Smith, M. J. and Ostrovskii, D., “Sol-Gel Preparation of A Di-Ureasil Electrolyte Doped with Lithium Perchlorate”, Electochim. Acta, 52, 15421548 (2006) 10.1016/j.electacta.2006.02.060Search in Google Scholar

Stephan, A. M., Gopu Kumar, S., Renganathan, N. G. and Anbu Kulandainathan, M., “Characterization of Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) Electrolytes Complexed with Different Lithium SaltsEur. Polym. J., 41, 1521 (2005) 10.1016/j.eurpolymj.2004.09.001Search in Google Scholar

Stephan, A. M., Saito, Y., Muniyandi, N., Renganathan, N. G., Kalyanasundaram, S. and Nimma Elizabeth, R., “Preparation and Characterization of PVC/PMMA Blend Polymer Electrolytes Complexed with LiN(CF3SO2)2”, Solid State Ionics, 148, 467473 (2002) 10.1016/S0167-2738(02)00089-9Search in Google Scholar

Subbu, C., Mathew, C. M., Kesavan, K. and Rajendran, S., “Electrochemical, Structural and Optical Studies on Poly(vinylidene chloride-co-acrylonitrile) Based Polymer Blend Membranes”, Int. J. Electrochem. Sci., 9, 49444958 (2014)Search in Google Scholar

Ulaganathan, M., Mathew, C. M. and Rajendran, S., “Highly Porous Lithium-Ion Conducting Solvent-Free Poly(vinylidene fluoride-co-hexafluoropropylene)/Poly(ethyl methacrylate) Based Polymer Blend Electrolytes for Li Battery Applications”, Electrochim. Acta, 93, 230235 (2013) 10.1016/j.electacta.2013.01.100Search in Google Scholar

Webber, A., “Conductivity and Viscosity of Solutions of LiCF3 SO3, Li (CF3SO2)2 N and their MixturesJ. Electrochemi. Soc., 138, 25862590 (1991) 10.1149/1.2087287Search in Google Scholar

Wen, S. J., Richardson, T. J., Ghantous, D. I., Striebel, K. A., Ross, P. N. and Cairns, E. J., “FTIR Characterization of PEO + LiN(CF3SO2)2 Electrolytes”, J. Electroanalytical Chem., 408, 113118 (1996) 10.1016/0022-0728(96)04536-6Search in Google Scholar

Received: 2015-01-02
Accepted: 2015-04-29
Published Online: 2015-08-11
Published in Print: 2015-08-14

© 2015, Carl Hanser Verlag, Munich

Downloaded on 29.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.3075/pdf
Scroll to top button