Epoxidized Esters of Palm Kernel Oil as an Effective Plasticizer for PVC: A Study of Mechanical Properties and Effect of Processing Conditions
-
K. Dutta
, S. Das und P. P. Kundu
Abstract
One of the most commonly used vegetable oil plasticizer in polyvinyl chloride (PVC) is epoxidized soybean oil (ESBO). On the contrary, epoxidized palm oil is among the least used, because of its low compatibility with PVC. This work reports that epoxidized and esterified palm kernel oil (EEPKO) has the potential to be used as a plasticizer for PVC. In this study, it was found that a maximum of 65 phr of EEPKO could be incorporated within the PVC resin. In addition, subjecting this EEPKO plasticized PVC (p-PVC) at a processing temperature of 200 °C resulted in much reduced plasticizer loss. EEPKO lowers the glass transition temperature of PVC from 79 °C to −23 °C. The optimum mechanical properties, namely tensile strength, elongation at break and hardness, were obtained for p-PVC processed at 200 °C.
References
Agarwal, D. K., Lawrence, W. H., Turner, J. E. and Autian, J., “Effects of Parenteral Di-(2-ethylhexyl)phthalate (DEHP) on Gonadal Biochemistry, Pathology, and Reproductive Performance of Mice”, J. Toxicol. Environ. Health, 26, 39–59 (1989)10.1080/15287398909531232Suche in Google Scholar
ASTM D 2240-00, Shore Hardness Testing of Plastics (2000)Suche in Google Scholar
ASTM D 5227-01, Standard Test Method for Measurement of Hexane Extractable Content of Polyolefins (2001)Suche in Google Scholar
Badri, K. H., Ahmad, S. H. and Zakaria, S., “Production of a High-Functionality RBD Palm Kernel Oil-Based Polyester Polyol”, J. Appl. Polym. Sci., 81, 384–389 (2001) 10.1002/app.1449Suche in Google Scholar
Baltacioglu, H., Balköse, D., “Effect of Zinc Stearate and/or Epoxidized Soybean Oil on Gelation and Thermal Stability of PVC-DOP Plastigels”, J. Appl. Polym. Sci., 74, 2488–2498 (1999) 10.1002/(SICI)1097-4628(19991205)74:10<2488::AID-APP18>3.0.CO;2-BSuche in Google Scholar
Beirnes, K. J., Burns, C. M., “Thermal Analysis of the Glass Transition of Plasticized Poly(vinyl chloride)”, J. Appl. Polym. Sci., 31, 2561–2567 (1986) 10.1002/app.1986.070310815Suche in Google Scholar
Benaniba, M. T., Belhaneche-Bensemra, N. and Gelbard, G., “Stabilizing Effect of Epoxidized Sunflower Oil on the Thermal Degradation of Poly(vinyl chloride)”, Polym. Degrad. Stab., 74, 501–505 (2001) 10.1016/S0141-3910(01)00170-7Suche in Google Scholar
Benecke, H. P., Vijayendran, B. R. and Elhard, J. D., U.S. Patent 6 797 753 B2 (2004)Suche in Google Scholar
Bouchareb, B., Benaniba, M. T., “Effects of Epoxidized Sunflower Oil on the Mechanical and Dynamical Analysis of the Plasticized Poly(vinyl chloride)”, J. Appl. Polym. Sci., 107, 3442–3450 (2008) 10.1002/app.27458Suche in Google Scholar
Boudhani, H., Lainé, C., Fulchiron, R. and Cassagnau, P., “Rheology and Gelation Kinetics of PVC Plastisols”, Rheol. Acta, 46, 825–838 (2007) 10.1007/s00397-006-0157-4Suche in Google Scholar
BS 746, Appendix E, Test methods E.1, E.2, E.3 and E.4. Accelerated Ageing, Loss of Mass and Non-Contamination Tests (1976)Suche in Google Scholar
Bueno-Ferrer, C., Garrigós, M. C. and Jiménez, A., “Characterization and Thermal Stability of Poly(vinyl chloride) Plasticized with Epoxidized Soybean Oil for Food Packaging”, Polym. Degrad. Stab., 95, 2207–2212 (2010) 10.1016/j.polymdegradstab.2010.01.027Suche in Google Scholar
Campbell, I., McConnell, G., “Chlorinated Paraffins and the Environment. 1. Environmental Occurrence”, Environ. Sci. Technol., 14, 1209–1214 (1980) 10.1021/es60170a001Suche in Google Scholar
Demertzis, P. G., Riganakos, K. A. and Akrida-Demertzi, K., “Gas Chromatographic Studies on Polymer-Plasticizer Compatibility: Interactions Between Food-Grade PVC and Epoxidized Soybean Oil”, Eur. Polym. J., 27, 231–235 (1991) 10.1016/0014-3057(91)90098-9Suche in Google Scholar
Erythropel, H. C., Marić, M. and Cooper, D. G., “Designing Green Plasticizers: Influence of Molecular Geometry on Biodegradation and Plasticization Properties”, Chemosphere, 86, 759–766 (2012) 10.1016/j.chemosphere.2011.10.054Suche in Google Scholar
Fenollar, O., Garćia, D., Sánchez, L., López, J. and Balart, R., “Optimization of the Curing Conditions of PVC Plastisols Based on the Use of an Epoxidized Fatty Acid Ester Plasticizer”, Eur. Polym. J., 45, 2674–2684 (2009) 10.1016/j.eurpolymj.2009.05.029Suche in Google Scholar
Fong, M. N. F., Salimon, J., “Epoxidation of Palm Kernel Oil Fatty Acids”, J. Sci. Technol., 4, 87–98 (2012)Suche in Google Scholar
Gall, R. J., Greenspan, F. P., “Epoxy Compounds from Unsaturated Fatty Acid Esters”, Ind. Eng. Chem., 47, 147–148 (1955) 10.1021/ie50541a045Suche in Google Scholar
Gan, L. H., Ooi, K. S., Goh, S. H., Gan, L. M. and Leong, Y. C., “Epoxidized Esters of Palm Olein as Plasticizers for Poly(vinylchloride)”, Eur. Polym. J., 31, 719–724 (1995) 10.1016/0014-3057(95)00031-3Suche in Google Scholar
García, J. C., Marcilla, A., “Rheological Study of the Influence of the Plasticizer Concentration in the Gelation and Fusion Processes of PVC Plastisols”, Polymer, 39, 3507–3514 (1998) 10.1016/S0032-3861(97)00297-8Suche in Google Scholar
Gibbons, W. S., Kusy, R. P., “Effects of Plasticization on the Dielectric Properties of Poly(vinyl chloride) Membranes”, Thermochim. Acta., 284, 21–45 (1996) 10.1016/0040-6031(96)02933-4Suche in Google Scholar
Gil, N., Saska, M. and Negulescu, I., “Evaluation of the Effects of Biobased Plasticizers on the Thermal and Mechanical Properties of Poly(vinyl chloride)”, J. Appl. Polym. Sci., 102, 1366–1373 (2006) 10.1002/app.24132Suche in Google Scholar
Goh, S. H., Choo, Y. M. and Ong, S. H., “Minor Constituents of Palm Oil”, J. Am. Oil Chem. Soc., 62, 237–240 (1985) 10.1007/BF02541384Suche in Google Scholar
Hammarling, L., Gustavsson, H., Svensson, K., Karlsson, S. and Oskarsson, A., “Migration of Epoxidized Soya Bean Oil from Plasticized PVC Gaskets into Baby Food”, Food Addit. Contam., 15, 203–208 (1998) 10.1080/02652039809374631Suche in Google Scholar
Hong, P.-D., Huang, H.-T., “Effect of Polymer-Solvent Interaction on Gelation of Polyvinyl Chloride Solutions”, Eur. Polym. J., 35, 2155–2164 (1999) 10.1016/S0014-3057(99)00023-3Suche in Google Scholar
Horn, O., Nalli, S., Cooper, D. and Nicell, J., “Plasticizer Metabolites in the Environment”, Water Res., 38, 3693–3698 (2004) 10.1016/j.watres.2004.06.012Suche in Google Scholar
ISO 527-2, Tensile Testing of Moulding and Extrusion Plastics (2012)Suche in Google Scholar
Karmalm, P., Hjertberg, T., Jansson, A. and Dahl, R., “Thermal Stability of Poly(vinyl chloride) with Epoxidised Soybean Oil as Primary Plasticizer”, Polym. Degrad. Stab., 94, 2275–2281 (2009a) 10.1016/j.polymdegradstab.2009.07.019Suche in Google Scholar
Karmalm, P., Hjertberg, T., Jansson, A., Dahl, R. and Ankner, K., “Network Formation by Epoxidised Soybean Oil in Plastisol Poly-(vinylchloride)”, Polym. Degrad. Stab., 94, 1986–1990 (2009b) 10.1016/j.polymdegradstab.2009.07.029Suche in Google Scholar
Kastner, J., Cooper, D. G., Marić, M., Dodd, P. and Yargeau, V., “Aqueous Leaching of Di-2-Ethylhexyl Phthalate and “Green” Plasticizers from Poly (vinyl chloride)”, Sci. Total Environ., 432, 357–364 (2012) 10.1016/j.scitotenv.2012.06.014Suche in Google Scholar
Kwak, S.-Y., “Structural Changes of PVC Plastisols in Progress of Gelation and Fusion as Investigated with Temperature-Dependent Viscoelasticity, Morphology, and Light Scattering”, J. Appl. Polym. Sci., 55, 1683–1690 (1995a) 10.1002/app.1995.070551208Suche in Google Scholar
Kwak, S.-Y., “In Situ, Quantitative Characterization of Gelation and Fusion Mechanism in Poly(vinyl chloride) Plastisols by Small Angle Light Scattering (SALS)”, Polym. Eng. Sci., 35, 1106–1112 (1995b) 10.1002/pen.760351306Suche in Google Scholar
Lau, O.-W., Wong, S.-K., “Contamination in Food from Packaging Material”, J. Chromatogr. A, 882, 255–270 (2000) 10.1016/S0021-9673(00)00356-3Suche in Google Scholar
Lee, J. H., Park, C. W. and Noh, I., “Thermal Stabilization of PVC in Non-Toxic Stabilizer Systems. 4. Thermal Stabilization by PEG and Epoxidized Soybean Oil System”, Polym. Korea, 19, 543–550 (1995)Suche in Google Scholar
López, J., Balart, R. and Jiménez, A., “Influence of Crystallinity in the Curing Mechanism of PVC Plastisols”, J. Appl. Polym. Sci., 91, 538–544 (2004) 10.1002/app.13122Suche in Google Scholar
Man, Y. B. C., Hussin, W. R. W., “Comparison of the Frying Performance of Refined, Bleached and Deodorized Palm Olein and Coconut Oil”, J. Food Lipids, 5, 197–210 (1998) 10.1111/j.1745-4522.1998.tb00120.xSuche in Google Scholar
Marcilla, A., García, J. C., “Rheological Study of PVC Plastisols during Gelation and Fusion”, Eur. Polym. J., 33, 349–355 (1997a) 10.1016/S0014-3057(96)00131-0Suche in Google Scholar
Marcilla, A., García, J. C., “Theoretical Model for the Gelation and Fusion Mechanisms of PVC Plastisols Based on Rheological Measurements”, Eur. Polym. J., 33, 357–363 (1997b) 10.1016/S0014-3057(96)00131-0Suche in Google Scholar
Marcilla, A., García, J. C., “Qualitative Model for Viscoelastic Measurement during Gelation and Fusion of PVC Plastisols”, Eur. Polym. J., 34, 1341–1348 (1998) 10.1016/S0014-3057(97)00256-5Suche in Google Scholar
Navarro, R., Perrino, M. P., Tardajos, M. G. and Reinecke, H., “Phthalate Plasticizers Covalently Bound to PVC: Plasticization with Suppressed Migration”, Macromolecules, 43, 2377–2381 (2010) 10.1021/ma902740tSuche in Google Scholar
Ovchinnikov, Y. V., Tetel'Baum, B. Y. and Maklakov, A. J., “Effects of Aging and Temperature on Changes in the States of Poly(vinylchloride)-Plasticizer Systems”, Vysokomol. Soedin. Ser. A, 13, 2422–2428 (1971)Suche in Google Scholar
Rosli, W. D. W., Kumar, R. N., Zah, S. M. and Hilmi, M. M., “UV Radiation Curing of Epoxidized Palm Oil-Cycloaliphatic Diepoxide System Induced by Cationic Photoinitiators for Surface Coatings”, Eur. Polym. J., 39, 593–600 (2003) 10.1016/S0014-3057(02)00241-0Suche in Google Scholar
Satue, M. T., Huang, S.-W. and Frankel, E. N., “Effect of Natural Antioxidants in Virgin Olive Oil on Oxidative Stability of Refined, Bleached, and Deodorized Olive Oil”, J. Am. Oil Chem. Soc., 72, 1131–1137 (1995) 10.1007/BF02540978Suche in Google Scholar
Sears, J. K., Darby, J. R.: The Technology of Plasticizers, Wiley, New York (1982)Suche in Google Scholar
Semsarzadeh, M. A., Mehrabzadeh, M. and Arabshahi, S. S., “Dynamic Mechanical Behavior of the Dioctyl Phthalate Plasticized Polyvinyl Chloride-Epoxidized Soya Bean Oil”, Eur. Polym. J., 38, 351–358 (2002) 10.1016/S0014-3057(01)00168-9Suche in Google Scholar
Shea, K. M., “Pediatric Exposure and Potential Toxicity of Phthalate Plasticizers”, Pediatrics, 111, 1467–1474 (2003) 10.1542/peds.111.6.1467Suche in Google Scholar
Staples, C. A., Peterson, D. R., Parkerton, T. F. and Adams, W. J., “The Environmental Fate of Phthalate Esters: A Literature Review”, Chemosphere, 35, 667–749 (1997) 10.1016/S0045-6535(97)00195-1Suche in Google Scholar
Starnes, W. H., Du, B., Kim, S., Zaikov, V. G., Ge, X. L. and Culyba, E. K. “Thermal Stabilization and Plasticization of Poly(vinylchloride) by Ester Thiols: Update and Current Status”, Thermochim. Acta, 442, 78–80 (2006) 10.1016/j.tca.2006.01.018Suche in Google Scholar
Storey, R. F., Mauritz, K. A. and Cox, B. D., “Diffusion of Various Dialkyl Phthalate Plasticizers in PVC”, Macromolecules, 22, 289–294 (1989) 10.1021/ma00191a053Suche in Google Scholar
Tawfik, S. Y., Asaad, J. N. and Sabaa, M. W., “Thermal and Mechanical Behaviour of Flexible Poly (vinyl chloride) Mixed with Some Saturated Polyesters”, Polym. Degrad. Stab., 91, 385–392 (2006) 10.1016/j.polymdegradstab.2005.04.041Suche in Google Scholar
Tickner, J. A., Schettler, T., Guidotti, T., McCally, M. and Rossi, M., “Health Risks Posed by Use of Di-2-Ethylhexyl Phthalate (DEHP) in PVC Medical Devices: A Critical Review”, Am. J. Ind. Med., 39, 100–111 (2001) 10.1002/1097-0274(200101)39:1<100::AID-AJIM10>3.0.CO;2-QSuche in Google Scholar
Treinen, K. A., Heindel, J. J., “Evidence that MEHP Inhibits Rat Granulosa Cell Function by a Protein Kinase C-Independent Mechanism”, Reprod. Toxicol., 6, 143–148 (1992) 10.1016/0890-6238(92)90116-BSuche in Google Scholar
Tsumura, Y., Ishimitsu, S., Kaihara, A., Yoshii, K., Nakamura, Y. and Tonogai, Y., “Di(2-ethylhexyl) Phthalate Contamination of Retail Packed Lunches Caused by PVC Gloves used in the Preparation of Foods”, Food Addit. Contam., 18, 569–579 (2001) 10.1080/02652030010028344Suche in Google Scholar
Tsumura, Y., Ishimitsu, S., Kaihara, A., Yoshii, K. and Tonogai, Y., “Phthalates, Adipates, Citrate and Some of the Other Plasticizers Detected in Japanese Retail Foods: A Survey”, J. Health Sci., 48, 493–502 (2002) 10.1248/jhs.48.493Suche in Google Scholar
Wang, G., Chen, Y., “Test Methods for Gelation of PVC Plastisol”, Polym. Test., 10, 315–324 (1991) 10.1016/0142-9418(91)90025-SSuche in Google Scholar
Warren, J. R., Lalwani, N. D. and Reddy, J. K., “Phthalate Esters as Peroxisome Proliferator Carcinogens”, Environ. Health Perspect., 45, 35–40 (1982) 10.1289/ehp.824535Suche in Google Scholar
Young, F. V. K., “Palm Kernel and Coconut Oils: Analytical Characteristics, Process Technology and Uses”, J. Am. Oil Chem. Soc., 60, 374–379 (1983) 10.1007/BF02543521Suche in Google Scholar
Yousef, E. A. A., Hussain, A. E. and Shoeb, Z. E., “Modification of Castor Oil by Isomerization, Halogenation and Application of Some Modified Products as Plasticizer in Nitrile Rubber Formulations”, J. Sci. Ind. Res., 60, 383–395 (2001)Suche in Google Scholar
© 2014, Carl Hanser Verlag, Munich
Artikel in diesem Heft
- Contents
- Contents
- Invited Papers
- Simha-Somcynsky Equation of State Modeling of the PVT Behavior of PP/Clay-Nanocomposite/CO2 Mixtures
- Regular Contributed Articles
- Effect of Pre-Molding Process and Additive of Injection Molded Wood/PP Composites
- Flame Retarded PE with MH/ATH/Microencapsulated Red Phosphorous and its Toughening by Polymeric Compatibilizers
- The Porous Structure and Mechanical Properties of Injection Molded HA/PA66 Scaffolds
- A Gas-Sensor-Based Measurement Setup for Inline Quality and Process Control in Polymer Extrusion
- Extrusion and Characterization of Soy Protein Film Incorporated with Soy Cellulose Microfibers
- Development of Composites of Highly Filled Phenol Formaldehyde Resin – Coconut (Cocos nucifera) Endocarp Particles
- Structural Analysis Examining the Mold Deformation Behavior for the Detection of the Flash in the Injection Mold
- Epoxidized Esters of Palm Kernel Oil as an Effective Plasticizer for PVC: A Study of Mechanical Properties and Effect of Processing Conditions
- Injection Molding of Beverage Container Caps Made of a Composite Consisting of Wood Cellulose Fiber and an Ethylene-Acrylic Acid Copolymer
- Study on Pumping Conveying Capacity Characteristics of Polymer Solids in Vane Extruder
- Morphology Control and Stabilization in Immiscible Polypropylene and Polyamide 6 Blends with Organoclay
- Optimization of Abrasive Water Jet Turning Parameters for Machining of Low Density Polyethylene Material Based on Experimental Design Method
- PPS News
- PPS News
- Seikei Kakou Abstracts
- Seikei Kakou Abstracts
Artikel in diesem Heft
- Contents
- Contents
- Invited Papers
- Simha-Somcynsky Equation of State Modeling of the PVT Behavior of PP/Clay-Nanocomposite/CO2 Mixtures
- Regular Contributed Articles
- Effect of Pre-Molding Process and Additive of Injection Molded Wood/PP Composites
- Flame Retarded PE with MH/ATH/Microencapsulated Red Phosphorous and its Toughening by Polymeric Compatibilizers
- The Porous Structure and Mechanical Properties of Injection Molded HA/PA66 Scaffolds
- A Gas-Sensor-Based Measurement Setup for Inline Quality and Process Control in Polymer Extrusion
- Extrusion and Characterization of Soy Protein Film Incorporated with Soy Cellulose Microfibers
- Development of Composites of Highly Filled Phenol Formaldehyde Resin – Coconut (Cocos nucifera) Endocarp Particles
- Structural Analysis Examining the Mold Deformation Behavior for the Detection of the Flash in the Injection Mold
- Epoxidized Esters of Palm Kernel Oil as an Effective Plasticizer for PVC: A Study of Mechanical Properties and Effect of Processing Conditions
- Injection Molding of Beverage Container Caps Made of a Composite Consisting of Wood Cellulose Fiber and an Ethylene-Acrylic Acid Copolymer
- Study on Pumping Conveying Capacity Characteristics of Polymer Solids in Vane Extruder
- Morphology Control and Stabilization in Immiscible Polypropylene and Polyamide 6 Blends with Organoclay
- Optimization of Abrasive Water Jet Turning Parameters for Machining of Low Density Polyethylene Material Based on Experimental Design Method
- PPS News
- PPS News
- Seikei Kakou Abstracts
- Seikei Kakou Abstracts