Home Effect of Processing Conditions on Properties of PET/Clay Nanocomposite Films
Article
Licensed
Unlicensed Requires Authentication

Effect of Processing Conditions on Properties of PET/Clay Nanocomposite Films

  • H. Ghasemi , P. J. Carreau , M. R. Kamal and N. Chapleau
Published/Copyright: April 6, 2013
Become an author with De Gruyter Brill

Abstract

Polyethylene terephthalate (PET) nanocomposite films (with 3 wt.% Cloisite 30B) were prepared by cast extrusion followed by uniaxial stretching, using chill rolls. Two screw profiles with different mixing elements under different screw speeds (N) and feeding rates (Q) were used to prepare PET/clay nanocomposite (PCN) films. Transmission electron microscopy (TEM) and wide angle X-ray diffraction (WAXD) showed that the clay layers were aligned in the machine direction (MD). XRD patterns depicted that the interlayer distance of clay platelets in the state of intercalation is somehow independent of the processing conditions, but the macro-scale characterization, including barrier and mechanical properties, showed that the level of clay layer delamination was affected by processing conditions. The results reveal that the applied strain has stronger effect than residence time on the barrier and mechanical properties. At the highest screw speed (N = 250 min−1), 27% reduction in oxygen permeability and 30% improvement in tensile modulus were obtained for the more severe screw profile.


Mail address: Pierre J. Carreau, CREPEC, Chemical Engineering Department, Ecole Polytechnique, 2500 Chemin Polytechnique, H3T 1J4, Montreal, Quebec, Canada. E-mail:

References

Barber, G. D., et al., “Poly(ethylene terephthalate) Ionomer Based Clay Nanocomposites Produced via Melt Extrusion”, Polymer, 46, 67066714(2005), DOI: 10.1016/j.polymer.2005.05.024Search in Google Scholar

Barker, C. P., et al., “Atomic Force Microscopy and Permeability Study of Stretching-induced Gas Barrier Loss of Alox Layers”, Thin Solid Films, 259, 4652(1995), DOI: 10.1016/0040-6090(95)80054-9Search in Google Scholar

Bikiaris, D., et al., “A New Approach to Prepare Poly(ethylene terephthalate)/Silica Nanocomposites with Increased Molecular Weight and Fully Adjustable Branching or Crosslinking by SSP”, Macromol. Rapid Commun., 27, 11991205(2006), DOI: 10.1002/marc.200600268Search in Google Scholar

BrandaoL.S., et al., “Thermal and Mechanical Properties of Poly(ethylene terephthalate)/Lamellar Zirconium Phosphate Nanocomposites”, J. Appl. Polym. Sci., 102, 38683876(2006), DOI: 10.1002/app.24096Search in Google Scholar

Chen, X., et al., “Effecto of Molecular Weight on Crystallization, Melting Behavior and Morphology of Poly(trimethylene terephalate)”, Polym. Test., 26, 144153(2007), DOI: 10.1016/j.polymertesting.2006.08.011Search in Google Scholar

Cho, J. W., Paul, D. R., “Nylon 6 Nanocomposites by Melt Compounding”, Polymer, 42, 10831094(2001), DOI: 10.1016/S0032-3861(00)00380-3Search in Google Scholar

Chung, J. W., et al., “Thermally Stable Exfoliated Poly(ethylene terephthalate) (PET) Nanocomposites as Prepared by Selective Removal of Organic Modifiers of Layered Silicate”, Polym. Degrad. Stabil., 93, 252259(2008), DOI: 10.1016/j.polymdegradstab.2007.09.009Search in Google Scholar

Costache, M. C., et al., “Preparation and Characterization of Poly(ethylene terephthalate)/Clay Nanocomposites by Melt Blending Using Thermally Stable Surfactants”, Polym. Advan. Technol., 17, 764771(2006), DOI: 10.1002/pat.752Search in Google Scholar

Davis, C. H., et al., “Effects of Melt-Processing Conditions on the Quality of Poly(ethylene terephthalate) Montmorillonite Clay Nanocomposites”, J. Polym. Sci. Pol. Phys., 40, 26612666(2002), DOI: 10.1002/polb.10331Search in Google Scholar

Dennis, H. R., et al., “Effect of Melt Processing Conditions on the Extent of Exfoliation in Organoclay-based NanocompositesPolymer, 42, 95139522(2001), DOI: 10.1016/S0032-3861(01)00473-6Search in Google Scholar

Fasulo, P. D., et al., “Extrusion Processing of TPO Nanocomposites”, Polym. Eng. Sci., 44, 10361045(2004), DOI: 10.1002/pen.20097Search in Google Scholar

Fornes, T. D., et al., “Nylon 6 Nanocomposites: The Effect of Matrix Molecular Weight”, Polymer, 42, 99299940(2002a), DOI: 10.1016/S0032-3861(01)00552-3Search in Google Scholar

Fornes, T. D., et al., “Effect of Organoclay Structure on Nylon 6 Nanocomposite Morphology and Properties”, Polymer, 43, 59155933(2002b), DOI: 10.1016/S0032-3861(02)00400-7Search in Google Scholar

Fornes, T. D., et al., “Effect of Sodium Montmorillonite Source on Nylon 6/Clay Nanocomposites”, Polymer, 45, 23212331(2004), DOI: 10.1016/j.polymer.2004.01.061Search in Google Scholar

Ghasemi, H., et al., “Preparation and Characterization of PET/Clay Nanocomposites by Melt Compounding”, Polym. Eng. Sci., in press (2011a)10.1002/pen.21874Search in Google Scholar

Ghasemi, H., et al., “Properties of PET Nanocomposite Films”, Polym. Eng. Sci., in press (2011b)10.1002/pen.22099Search in Google Scholar

Gurmendi, U., et al., “Structure and Properties of Nanocomposites with a Poly(ethylene terephthalate) Matrix”, Macromol. Mater. Eng., 292, 169175(2007), DOI: 10.1002/mame.200600376Search in Google Scholar

Hartley, P. A., Parfitt, G. D., “Dispersion of Powders in Liquids. 1. The Contribution of the Van Der Waals Force to the Cohesiveness of Carbon Black Powders”, Langmuir, 1, 651657(1985), DOI: 10.1021/la00066a003Search in Google Scholar

Hotta, S., Paul, D. R., “Nanocomposites Formed From Linear Low Density Polyethylene and OrganoclaysPolymer, 45, 76397654(2004), DOI: 10.1016/j.polymer.2004.08.059Search in Google Scholar

Ke, Z., Yongping, B., “Improve the Gas Barrier Property of PET Film with Montmorillonite by In Situ Interlayer Polymerization”, Mater. Lett., 59, 33483351(2005), DOI: 10.1016/j.matlet.2005.05.070Search in Google Scholar

Kim, D., Lee, J. S., Barry, C. F., Mead, J. L., “Evaluation And Prediction Of The Effects Of Melt-Processing Conditions On The Degree Of Mixing In Alumina/Poly(Ethylene Terephthalate) Nanocomposites”, J. Appl. Polym. Sci., 109, 29242934(2008), DOI: 10.1002/app.28394Search in Google Scholar

Lauritzen, J. I., Hoffman, J. D., “Extension of Theory of Growth of Chain-folded Polymer Crystals to Large Undercooling”, J. Appl. Phys., 44, 4340(1973), DOI: 10.1063/1.1661962Search in Google Scholar

Lertwimolnun, W., Vergnes, B., “Influence of Compatibilizer and Processing Conditions on the Dispersion of Nanoclay in a Polypropylene Matrix”, Polymer, 46, 34623471(2005), DOI: 10.1016/j.polymer.2005.02.018Search in Google Scholar

Lertwimolnun, W., Vergnes, B., “Effect of Processing Conditions on the Formation of Polypropylene/Organoclay Nanocomposites in a Twin Screw ExtruderPolym. Eng. Sci., 46, 314323(2006), DOI: 10.1002/pen.20458Search in Google Scholar

Lertwimolnun, W., Vergnes, B., “Influence of Screw Profile and Extrusion Conditions on the Microstructure of Polypropylene/Organoclay Nanocomposites”, Polym. Eng. Sci., 47, 21002109(2007), DOI: 10.1002/pen.20934Search in Google Scholar

Li, X., et al., “Effect of Blending Sequence on the Microstructure and Properties of PBT/EVA-g-MAH/Organoclay Ternary Nanocomposites”, Polym. Eng. Sci., 42, 21562164(2002), DOI: 10.1002/pen.11105Search in Google Scholar

Lin, B., et al., “Nylon 66/Clay Nanocomposite Structure Development in a Twin Screw Extruder”, Polym. Eng. Sci., 49, 824834(2009), DOI: 10.1002/pen.21327Search in Google Scholar

Lu, C., Mai, Y. W., “Influence of Aspect Ratio on Barrier Properties of Polymer-clay Nanocomposites”, Phys. Rev. Lett., 95, 088303(2005), PMid:16196908, DOI: 10.1103/PhysRevLett.95.088303Search in Google Scholar PubMed

Luo, Z. P., Koo, J. H., “Quantifying the Dispersion of Mixture Microstructures”, J. Microsc., 225, 118125(2007), PMid:17359246, DOI: 10.1111/j.1365-2818.2007.01722.xSearch in Google Scholar PubMed

Luo, Z. P., Koo, J. H., “Quantification of the Layer Dispersion Degree in Polymer Layered Silicate Nanocomposites by Transmission Electron Microscopy”, Polymer, 49, 18411852(2008), DOI: 10.1016/j.polymer.2008.02.028Search in Google Scholar

Manas-Zloczower, I.: “Mixing and Compounding of Polymers”, Hanser, Munich, Ohio(2009)10.3139/9783446433717Search in Google Scholar

Mckelvey, J. M.: Polymer Processing, Wiley-Interscience, New York(1962)Search in Google Scholar

Modesti, M., et al., “Effect of Processing Conditions on Morphology and Mechanical Properties of Compatibilized Polypropylene Nanocomposites”, Polymer, 46, 1023710245(2005), DOI: 10.1016/j.polymer.2005.08.035Search in Google Scholar

Peltola, P., et al., “Effect of Rotational Speed of Twin Screw Extruder on the Microstructure and Rheological and Mechanical Properties of Nanoclay-reinforced Polypropylene Nanocomposites”, Polym. Eng. Sci., 46, 9951000(2006), DOI: 10.1002/pen.20586Search in Google Scholar

Ramirez-Vargas, E., et al., “Effect of Processing Conditions on the Structural Morphology of PP–EP/EVA/Organoclay Ternary Nanocomposites”, Polym. Bull., 62, 391403(2009), DOI: 10.1007/s00289-008-0015-xSearch in Google Scholar

Ray, S. S., et al., “Structure-Property Relationship in Biodegradable Poly(butylene succinate)/Layered Silicate Nanocomposites”, Macromolecules, 36, 23552367(2003), DOI: 10.1021/ma021728ySearch in Google Scholar

Schmachtenberg, E., et al., “Microwave Assisted HMDSO/Oxygen Plasma Coated Polyethylene Terephthalate Films: Effects of Process Parameters and Uniaxial Strain on Gas Barrier Properties, Surface Morphology, and Chemical Composition”, J. Appl. Polym. Sci., 99, 14851495(2006), DOI: 10.1002/app.21266Search in Google Scholar

Spencer, R. S., WileyR.M., “The Mixing of Very Viscous Liquids”, J. Colloid Sci., 6, 133145(1951), DOI: 10.1016/0095-8522(51)90033-5Search in Google Scholar

Roy, P., “Optical Properties of Packaging Materials”, Journal of Plastic Film and Sheeting, 9, 173180(1993), DOI: 10.1177/875608799300900302Search in Google Scholar

Tanoue, S., et al., “Effect of Screw Rotation Speed on the Properties of Polystyrene/Organoclay Nanocomposites Prepared by a Twin-screw Extruder”, J. Appl. Polym. Sci., 101, 11651173(2006), DOI: 10.1002/app.24004Search in Google Scholar

Tarapow, J. A., et al., “Mechanical Properties of Polypropylene/Clay Nanocomposites: Effect of Clay Content, Polymer/Clay Compatibility, and Processing Conditions”, J. Appl. Polym. Sci., 111, 768778(2009)Search in Google Scholar

Todorov, L. V., Viana, J. C., “Characterization of PET Nanocomposites Produced by Different Melt-based Production Methods”, J. Appl. Polym. Sci., 106, 16591669(2007), DOI: 10.1002/app.26716Search in Google Scholar

Xu, X., et al., “Degradation of Poly(ethylene terephthalate)/Clay Nanocomposites during Melt Extrusion: Effect of Clay Catalysis and Chain Extension”, Polym. Degrad. Stabil., 94, 113123(2009), DOI: 10.1016/j.polymdegradstab.2008.09.009Search in Google Scholar

Yano, K., et al., “Synthesis and Properties of Polyimide-clay Hybrid Films”, J. Polym. Sci.A1, 35, 22892294(1997)Search in Google Scholar

Zhao, Z., et al., “Effects of Surfactant Loadings on the Dispersion of Clays in Maleated Polypropylene”, Langmuir, 19, 71577159(2003), DOI: 10.1021/la034575wSearch in Google Scholar

Zhu, L., Xanthos, M., “Effects of Process Conditions and Mixing Protocols on Structure of Extruded Polypropylene Nanocomposites”, J. Appl. Polym. Sci., 93, 18911899(2004), DOI: 10.1002/app.20658Search in Google Scholar

Received: 2010-11-15
Accepted: 2010-12-20
Published Online: 2013-04-06
Published in Print: 2011-05-01

© 2011, Carl Hanser Verlag, Munich

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.2446/html
Scroll to top button