Home Epoxy-Montmorillonite Nanocomposites Applied to Powder Coatings
Article
Licensed
Unlicensed Requires Authentication

Epoxy-Montmorillonite Nanocomposites Applied to Powder Coatings

  • D. Piazza , N. P. Lorandi , E. S. Rieder , L. C. Scienza and A. J. Zattera
Published/Copyright: April 6, 2013
Become an author with De Gruyter Brill

Abstract

The wide range of applications associated with nanocomposites is due to their improved properties when compared to conventional composites. In this study, commercial epoxy-based powder coatings were formulated with 2 and 4% (w/w) of an organically modified montmorillonite (OMMT) by incorporation in the melt state (extrusion). These composites were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and X-ray diffraction (XDR). The thermal behavior and stability of the epoxy nanocomposites were studied by TGA and DSC. The nanoparticle structure within the polymer matrix was analyzed by XRD and TEM. A predominantly exfoliated structure was observed by TEM, which was confirmed by XDR analysis. The study demonstrated that the nanoclay increases the glass transition and crosslinking temperatures and also enhances the thermal stability of the coating.


Mail address: Ademir José Zattera, Polymers Laboratory, University of Caxias do Sul (UCS), Francisco Getúlio Vargas, 1130, 95070-560, Brazil. E-mail:

References

Alexandre, M., Dubois, P., “Polymer-layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials.Mater. Sci. Eng., 28, 163(2000), DOI: 10.1016/S0927-796X(00)00012-7Search in Google Scholar

Araújo, E. M., et al., “Influência das Condições de Processamento em Nanocompósitos de PE/Argila Organofílica”, Revista Eletronica De Materiais E Processos, 3. 3, 2028(2008)Search in Google Scholar

Bagherzadeh, M. R., Mahdavi, F.Preparation of Epoxy-Clay Nanocomposite: An Investigation on its Anti-corrosive Behavior in Epoxy Coating”, Prog. Org. Coat., 60, 117120(2007), DOI: 10.1016/j.porgcoat.2007.07.011Search in Google Scholar

Barbosa, R., et al., “Preparação de Argilas Organofílicas e Desenvolvimento de Nanocompósitos de Polietileno. Parte 2: Comportamento de Inflamabilidade”, Polímeros: Ciência e Tecnologia, 17, 104112(2007)10.1590/S0104-14282007000200009Search in Google Scholar

Barbosa, R., et al., “Morfologia ae Nanocompósitos de Polietileno e Poliamida-6 Contendo Argila Nacional”, Polímeros: Ciência e Tecnologia, 16, 246251(2006a)10.1590/S0104-14282006000300016Search in Google Scholar

Barbosa, R., et al., “Efeitos de Sais Quaternários de Amônio e de Argila Organofílica na Estabilidade Térmica e na Inflamabilidade de Nanocompósitos de Polietileno de Alta Densidade”, Revista Eletronica De Materiais E Processo, 1. 1, 5057(2006b)Search in Google Scholar

Camino, G., et al., “Thermal and Combustion Behavior of Layered Silicate-Epoxy Nanocompósitos”, Polym. Degrad. Stab., 90, 354362(2005), DOI: 10.1016/j.polymdegradstab.2005.02.022Search in Google Scholar

Carrasco, F., Pagès, P., “Thermal Degradation and Stability of Epoxy Nanocomposites: Influence of Montmorillonite Content and Cure Temperature”, Polym. Degrad. Stab., 93, 10001007(2008), DOI: 10.1016/j.polymdegradstab.2008.01.018Search in Google Scholar

Ceccia, S., et al., “Nanocomposite UV-cured Coatings: Organoclay Intercalation by an Epoxy Resin”, Prog. Org. Coat., 63, 110115(2008), DOI: 10.1016/j.porgcoat.2008.04.012Search in Google Scholar

Chang, K.-C., et al., “Effect of Clay on the Corrosion Protection Efficiency of PMMA/Na+-MMT Clay Nanocomposite Coatings Evaluated by Electrochemical Measurements”, European Polymer Journal, 44, 1323(2008), DOI: 10.1016/j.eurpolymj.2007.10.011Search in Google Scholar

Chen, C., Khobaid, M., Curliss, D., “Epoxy Layered-Silicate Nanocomposites.Prog. Org. Coat., 47, p. 376383(2003), DOI: 10.1016/S0300-9440(03)00130-9Search in Google Scholar

De Camargo, M., “Resinas Poliésteres Carboxifuncionais Para Tinta em Pó: Caracterização e Estudo Cinético da Reação de Cura”, Dissertation-Program de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materias da UFRGS, Porto Alegre (2002)Search in Google Scholar

De Paiva, L. B., et al., “Organoclays: Properties, Preparation and Applications”, Applied Clay Science, 42, 824(2008a), DOI: 10.1016/j.clay.2008.02.006Search in Google Scholar

De Paiva, L. B., et al., “Argilas Organofílicas: Características, Metodologias de Preparação, Compostos de Intercalação e Técnicas de Caracterização”, Cerâmica, 54, 213226(2008b)10.1590/S0366-69132008000200012Search in Google Scholar

De Paiva, L. B., et al., “Propriedades Mecânicas de Nanocompósitos de Polipropileno e Montmorilonita Organofílica”, Polímeros: Ciência e Tecnologia, 16, 136140(2006)Search in Google Scholar

Gu, A., Liang, G., “Thermal Degradation Behavior and Kinetic Analysis of Epoxy/Montmorillonite Nanocomposites.Polym. Degrad. Stab., 80, 383391(2003), DOI: 10.1016/S0141-3910(03)00026-0Search in Google Scholar

Hang, T. T. X., et al., “Corrosion Protection of Carbon Steel by an Epoxy Resin Containing Organically Modified Clay”, Surf. Coat. Techno., 201, 74087415(2007), DOI: 10.1016/j.surfcoat.2007.02.009Search in Google Scholar

Hussain, F., et al., “Epoxy-Silicate Nanocomposites: Cure Monitoring and Characterization”, Mater. Sci. Eng. A, 445–446, 467476(2007), DOI: 10.1016/j.msea.2006.09.071Search in Google Scholar

José, N. M., Prado, L. A. S. A., “Materiais Híbridos Orgânico-Inorgânicos: Preparação e Algumas Aplicações”, Quím. Nova, 28, 281288(2005)Search in Google Scholar

Kowalczyk, K., Spychaj, T., “Epoxy Coatings with Modified Montmorillonites”, Prog. Org. Coat., 63, 425429(2008), DOI: 10.1016/j.porgcoat.2008.03.001Search in Google Scholar

Pavlidou, S., Papaspyrides, C. D., “A Review on Polymer-layered Silicate Nanocomposites.Prog. Polym. Sci., 33, 11191198(2008), DOI: 10.1016/j.progpolymsci.2008.07.008Search in Google Scholar

Pluart, L. L., et al., “Epoxy/Montmorillonite Nanocomposites: Influence of Organophilic Treatment on Reactivity, Morphology and Fracture Properties”, Polymer, 46, 1226712278(2005), DOI: 10.1016/j.polymer.2005.10.089Search in Google Scholar

Ray, S. S., Okamoto, M., “Polymer/Layered Silicate Nanocompósitos: A Review from Preparation to Processing.Prog. Polym. Sci., 28, 15391641(2003), DOI: 10.1016/j.progpolymsci.2003.08.002Search in Google Scholar

Salahuddin, N., et al., “Nanoscale Highly Filled Epoxy Nanocomposite”, European Polymer Journal, 38, 14771482(2002), DOI: 10.1016/S0014-3057(02)00015-0Search in Google Scholar

Sun, L., et al., “Barrier Properties of Model Epoxy Nanocomposites”, J. Membr. Sci., 318, 129136(2008), DOI: 10.1016/j.memsci.2008.02.041Search in Google Scholar

Tjong, S. C., “Structural and Mechanical Properties of Polymer Nanocompósitos”, Mater. Sci. Eng., 53, 73197(2006), DOI: 10.1016/j.mser.2006.06.001Search in Google Scholar

Truc, T. A., et al., “Incorporation of an Indole-3 Butyric Acid Modified Clay in Epoxy Resin for Corrosion Protection of Carbon Steel”, Surf. Coat. Technol., 202, 49454951(2008), DOI: 10.1016/j.surfcoat.2008.04.092Search in Google Scholar

Yeh, J.-M., Chang, K.-C., “Polymer/Layered Silicate Nanocomposite Anticorrosive Coatings”, J. Ind. Eng. Chem., 14, 275291(2008), DOI: 10.1016/j.jiec.2008.01.011Search in Google Scholar

Received: 2010-08-15
Accepted: 2011-04-27
Published Online: 2013-04-06
Published in Print: 2011-11-01

© 2011, Carl Hanser Verlag, Munich

Articles in the same Issue

  1. Contents
  2. Contents
  3. Regular Contributed Articles
  4. Applicability of the Impact Response Analysis Method for Reinforced Concrete Beams Mixed with Polyvinyl Alcohol Short Fibers
  5. Epoxy-Montmorillonite Nanocomposites Applied to Powder Coatings
  6. Direct Imprinting Using Magnetic Nickel Mold and Electromagnetism Assisted Pressure for Replication of Microstructures
  7. Automated Mold Heating System Using High Frequency Induction with Feedback Temperature Control
  8. The Prediction of Bowing Distortion of Film after Transverse Stretching with Consideration of Heated Air Flow in a Tenter
  9. The Influence of Injection Molding and Injection Compression Molding on Ultra-high Molecular Weight Polyethylene Polymer Microfabrication
  10. A Design-of-Experiment Study on the Microcellular Extrusion of Sub-critical CO2 Saturated PLA Pellets
  11. Optimization of Injection Molding Process for SGF and PTFE Reinforced PC Composites Using Response Surface Methodology and Simulated Annealing Approach
  12. Flow Visualisation in Co-rotating Twin Screw Extruders: Positron Emission Particle Tracking and Numerical Particle Trajectories
  13. The Influence of Melt and Process Parameters on the Quality and Occurrence of Part Defects in Water-assisted Injection Molded Tubes
  14. Model and Numerical Simulation for the Second Penetration in Water-assisted Injection Molding
  15. Influence of Extrusion Conditions on the Rheological Behavior of Nuclear Bituminized Waste Products
  16. Influence of Dicumyl Peroxide Content on Thermal and Mechanical Properties of Polylactide
  17. Rapid Communications
  18. Calculation of Average Residence Time in a Ko-kneader
  19. PPS-News
  20. PPS News
Downloaded on 29.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.2407/pdf
Scroll to top button