Startseite Numerical Simulation of a Thermoviscoelastic Frictional Problem with Application to the Hot-Embossing Process for Manufacturing of Microcomponents
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical Simulation of a Thermoviscoelastic Frictional Problem with Application to the Hot-Embossing Process for Manufacturing of Microcomponents

  • K. K. Kabanemi , J. P. Marcotte , J. F. Hétu , M. Worgull und M. Heckele
Veröffentlicht/Copyright: 6. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Hot embossing is a compression molding technique used for high replication accuracy of small features. One of the most sensitive phases of the process is the de-embossing stage during which the patterned part has to be demolded. In this paper, the demolding stage is considered as a frictional contact problem between a rigid mold insert and a viscoelastic polymer sheet as it deforms and cools inside a mold under an applied force. The contact is modeled with a modified Coulomb's law of dry friction while a generalized Maxwell model is used to describe the polymer behavior during embossing, cooling and de-embossing stages. The heat transfer between the mold insert and the patterned polymer sheet is solved through a domain decomposition method. A finite element approximation based on a penalized technique is proposed and analyzed. The purpose of this modeling approach is to predict dimensional stability and residual shape of microcomponents in the hot embossing process. Such a prediction will allow one to assign appropriate processing conditions that minimize geometrical imperfections and increase replication accuracy.


Mail address: Kalonji K. Kabanemi, Industrial Materials Institute, National Research Council of Canada, 75, de Martagne, Boucherville, Québec, Canada J4B 6Y4. E-mail:

References

Amassad, A., Fabre, C., “Analysis of a Viscoelastic Unilateral Contact Problem Involving the Coulomb Friction Law”, J. Opt. Theor. Appl., 116, 465483(2003)10.1023/A:1023044517955Suche in Google Scholar

Brunet, M., “Numerical Analysis of Cold-Forming Residual Stresses in Thin-Walled Structures”, in Numiform'92 Proceedings, Chenot (Eds.), Balkema, Rotterdam, p. 427432(1992)Suche in Google Scholar

Ferry, J. D.: Mechanical Properties of Polymers, 2nd Edition, Willy & Sons(1970)Suche in Google Scholar

Heckele, M., Schomburg, W. K., “Review on Micro Molding of Thermoplastic Polymers”, J. Micromech. Microeng., 14, R1–R14 (2004)10.1088/0960-1317/14/3/R01Suche in Google Scholar

Heckele, M., et al., “Hot Embossing – The Molding Technique for Plastic Microstructures”, Microsyst. Technol., 4, 122124(1998). 10.1007/s005420050112Suche in Google Scholar

Isayev, A. I.: Injection and Compression Molding Fundamentals. Marcel Dekker, New York(1987)Suche in Google Scholar

Jaloux-Salard, M. A.: Étude Expérimentale et Théorique du Procédé de Matriçage à Chaud de Thermoplastiques pour la Fabrication de Microstructures. Bachelor Thesis, École d'ingénieurs en génie des systèmes industriels, La Rochelle, France (2005)Suche in Google Scholar

Juang, Y. J., et al., “Hot Embossing in Microfabrication. Part I: Experimental”, Polym. Eng. Sci., 42, 539550(2002a)10.1002/pen.10970Suche in Google Scholar

Juang, Y. J., et al., “Hot Embossing in Microfabrication. Part II: Rheological Characterization and Process Analysis”, Polym. Eng. Sci., 42, 539550(2002b)10.1002/pen.10970Suche in Google Scholar

Kabanemi, K. K., Crochet, M. J., “Thermoviscoelastic Calculation of Residua Stresses and Residual Shapes of Injection Molded Parts”, Int. Polym. Proc., 7, 6070(1992)Suche in Google Scholar

Kabanemi, K. K., et al., “Numerical Simulation of a Thermoviscoelastic Frictional Problem with Application to the Hot-Embossing Process for Microstructure Fabrication”, Americas Regional Meeting PPS Proceedings (2005)Suche in Google Scholar

Kloosterman, G.: Contact Methods in Finite Element Simulations. Ph.D. Thesis, Netherlands Institute for Metals Research(2002)Suche in Google Scholar

Kovacs, A. J., “La Contraction Isotherme du Volume des Polymères Amorphes”, J. Polym. Sci., 30, 131147(1958)10.1002/pol.1958.1203012111Suche in Google Scholar

Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Clarendon Press, Oxford(1999)10.1007/978-94-011-4647-0_11Suche in Google Scholar

Scheer, H.-C., Schulz, H., “A Contribution to the Flow Behaviour of thin polymer films during hot embossing lithography”, Microelectron. Eng., 56, 311332(2001)10.1016/S0167-9317(01)00569-XSuche in Google Scholar

Schift, H., et al., “Pattern Formation in Hot Embossing of Thin Polymer Films”, Nanotechnology, 12, 173177(2001)10.1088/0957-4484/12/2/321Suche in Google Scholar

Smith, B., et al.: Domain Decomposition, Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press(1996)Suche in Google Scholar

Struik, L. C. E.: Internal Stresses, Dimensional Instabilities and Molecular Orientations in Plastics. Willy & Sons(1990)Suche in Google Scholar

Studer, V., et al., “Nanoembossing of Thermoplastic Polymers for Microfluidic Applications”, Appl. Phys. Lett., 80, 36143616(2002)10.1063/1.1479202Suche in Google Scholar

Received: 2008-09-10
Accepted: 2009-01-06
Published Online: 2013-04-06
Published in Print: 2009-05-01

© 2009, Carl Hanser Verlag, Munich

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.2227/pdf
Button zum nach oben scrollen