Startseite Predicting the Yield Stress of Polymer Glasses Directly from Processing Conditions: Application to Miscible Systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Predicting the Yield Stress of Polymer Glasses Directly from Processing Conditions: Application to Miscible Systems

  • T. A. P. Engels , B. A. G. Schrauwen , L. C. A. van Breemen und L. E. Govaert
Veröffentlicht/Copyright: 6. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A previously developed model which predicts the yield stress of a polymer glass directly from processing conditions is applied to a system of miscible polymers. The selected system consists of a blend of polycarbonate with polyester and three blend compositions of increasing weight percentages polyester are investigated with respect to their aging kinetics. Based on these kinetics, the yield stress as it results form the thermal history experienced during processing is predicted and found to be in good agreement with experimental results. The parameters governing the evolution of the yield stress are shown to follow the rule of mixtures, enabling the prediction of the yield stress of any blend composition.


Mail address: Leon E. Govaert, Dutch Polymer Institute (DPI), Section Materials Technology (MaTe), Eindhoven University of Technology, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands. E-mail:

References

Bauwens-Crowet, C., Bauwens, J. C., “Annealing of Polycarbonate below the Glass Transition: Quantitative Interpretation of thee Effect on Yield Stress and Differential Scanning Calorimetry Measurements”, Polymer, 23, 15991604(1982)10.1016/0032-3861(82)90178-1Suche in Google Scholar

Bauwens-Crowet, C., et al., “The Strain-rate and Temperature Dependence of the Yield of Polycarbonate in Tension, Tensile Creep and Impact Tests”, J. Mater. Sci., 9, 11971201(1974)10.1007/BF00552841Suche in Google Scholar

Crissman, J. M., McKenna, G. B., “Relating Creep and Creep Rupture in PMMA Using a Reduced Variable Approach”, J. Polym. Sci.,: Part B: Polym. Phys., 25, 16671677(1987)10.1002/polb.1987.090250809Suche in Google Scholar

Crissman, J. M., McKenna, G. B., “Physical and Chemical Aging in PMMA and Their Effects on Creep and Creep Rupture Behavior”, J. Polym. Sci.,: Part B: Polym. Phys., 28, 14631473(1990)10.1002/polb.1990.090280904Suche in Google Scholar

Engels, T. A. P., et al., “Predicting the Mechanical Performance of Glassy Polymers Directly from Processing Conditions”, in: Govaert, L. E., Meijer, H. E. H. (Eds.), “13th International Conference on Deformation Yield and Fracture of Polymers”, Materials Technology Group, Kerkrade, The Netherlands(2006a)Suche in Google Scholar

Engels, T. A. P., et al., “Processing Induced Properties in Glassy Polymers: Application of Structural Relaxation to Yield Stress Development”, J. Polym. Sci.,: Part B: Polym. Phys., 44, 12121225(2006b)10.1002/polb.20773Suche in Google Scholar

Govaert, L. E., et al., “Processing Induced Properties in Glassy Polymers: Developmen of the Yield Stress in Polycarbonate”, Int. Polym. Processing, XX, 170177(2005)10.3139/217.1870Suche in Google Scholar

Govaert, L. E., Tervoort, T. A., “Strain Hardening of Polycarbonate in the Glassy State: Influence of Temperature and Molecular weight”, J. Polym. Sci.,: Part B: Polym. Phys., 42, 20412049(2004)10.1002/polb.20095Suche in Google Scholar

G'Sell, C., McKenna, G. B., “Influence of Physical Aging on the Yield Response of Model dgebapoly/(propyleneoxide) Epoxy Glasses”, Polymer, 33, 21032113(1992)10.1016/0032-3861(92)90876-XSuche in Google Scholar

Hodge, I. M., “Enthalpy Relaxation and Recovery in Amorphous Materials”, J. Non-Crystalline Solids, 169, 211266(1993)10.1016/0022-3093(94)90321-2Suche in Google Scholar

Hutchinson, J. M., “Physical Aging of Polymers”, Progress in Polymer Science, 20, 703760(1995)10.1016/0079-6700(94)00001-ISuche in Google Scholar

Janssen, R. P. M., et al., “An Analytical method to Predict Fatigue Life of Thermoplasics in Uniaxial Loading: Sensitivity to Wave Type, Frequency and Stress Amplitude”, Macromolecules, 41, 25312540(2008a)10.1021/ma071274aSuche in Google Scholar

Janssen, R. P. M., et al., “Fatigue Life Predictions for Glassy Polymers: A Constitutive Approach”, Macromolecules, 41, 25202530(2008b)10.1021/ma071273iSuche in Google Scholar

Klompen, E. T. J., et al., “Quantitative prediction of Long-term Failure of Polycarbonate”, Macromolecules, 38, 70097017(2005a)10.1021/ma0504973Suche in Google Scholar

Klompen, E. T. J., “Modelling of the Post-yield Response of Glassy Polymer: Influence of Thermomechanical History”, Macromolecules, 38, 69977008(2005b)10.1021/ma050498vSuche in Google Scholar

Marchese, P., et al., “Relationship between the Molecular Architecture, Crystallization Capacity, and Miscibility in poly(butyleneterephthalate)/Polycarbonate blends: A Comparison with Poly(ethyleneterephthalate)/Polycarbonate blends”, J. Polym. Sci.,: Part B: Polym. Phys., 42, 28212832(2004)10.1002/polb.20156Suche in Google Scholar

McKenna, G. B., Comprehensive Polymer Science, Vol. 2: Polymer Properties, chapter Glass Formation and Glassy Behavior, pp. 311362, Pergamon Press, Oxford(1989)10.1016/B978-0-08-096701-1.00047-1Suche in Google Scholar

van Melick, H. G. H., et al., “On the Origin of Strain Hardening in Glassy Polymers”, Polymer, 44, 24932505(2003)10.1016/S0032-3861(03)00112-5Suche in Google Scholar

Moynihan, C. T., et al., “Thermodynamic and Transport Properties of Liquids near the Glass Transition Temperature. Structural Relaxation in Vitreous Materials”, Annals of the New York Academy of Sciences, 279, 1535(1976)10.1111/j.1749-6632.1976.tb39688.xSuche in Google Scholar

Nanzai, Y., “Plastic Deformation Mechanism in PMMA under Creep Stress”, JSME International Journal, Series A: Solid Mechanics and Material Engineering, 37, 149153(1994)Suche in Google Scholar

Narayanaswamy, O. S., “Model of Structural Relaxation in Glass”, J. Amer. Ceram. Soci., 54, 491498(1971)10.1111/j.1151-2916.1971.tb12186.xSuche in Google Scholar

Narisawa, I., et al., “Delayed Yielding of Polycarbonate under Constant Load”, J. Polym. Sci.,: Polym. Phys. Edition, 16, 14591470(1978)10.1002/pol.1978.180160811Suche in Google Scholar

Samios, C. K., Kalfoglou, N. K., “Compatibility Characterization of Polycarbonate/Copolyester Blends”, Polymer, 41, 57595767(2000)10.1016/S0032-3861(99)00803-4Suche in Google Scholar

Scherer, G. W., Relaxation in Glass and Composites, Krieger Publishing Company, Malabar, Florida(1986)Suche in Google Scholar

Struik, L. C. E., Physical Aging of Amorphous Polymers and Other Materials, Elsevier, Amsterdam(1978)Suche in Google Scholar

Tool, A. Q., “Relation between Inelastic Deformability and Thermal Expansion of Glass in its Annealing Range”, J. Amer. Ceram. Sci., 29, 240253(1946)10.1111/j.1151-2916.1946.tb11592.xSuche in Google Scholar

Utracki, L. A.: Polymer Blends Handbook, Vol. I&II, Kluwer Academic Publishers, Dordrecht(2002)10.1007/0-306-48244-4Suche in Google Scholar

Xylex, “http://www.sabic-ip.com/gep/plastics/en/productsandservices/productline/xylex.html(2008)Suche in Google Scholar

Yavari, A., et al., “Effect of Transesterification Products on the Miscibility and Phase Behavior of Poly(trimethyleneterephthalate)/bisphenol a Polycarbonate Blends”, European Polymer Journal, 41, 28802886(2005)10.1016/j.eurpolymj.2005.06.004Suche in Google Scholar

Received: 2008-08-21
Accepted: 2009-02-08
Published Online: 2013-04-06
Published in Print: 2009-05-01

© 2009, Carl Hanser Verlag, Munich

Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.2224/pdf
Button zum nach oben scrollen