Startseite High-speed Melt Spinning of Nanoparticle-filled High Molecular Weight Poly(ethylene terephthalate)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

High-speed Melt Spinning of Nanoparticle-filled High Molecular Weight Poly(ethylene terephthalate)

  • K. H. Jang , B. C. Kim , W. G. Hahm und T. Kikutani
Veröffentlicht/Copyright: 6. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

High molecular weight poly(ethylene terephthalate) (HMW-PET) (intrinsic viscosity of 0.809 dL/g) and its nanocomposites with 1 wt.% organoclay C12PPh-Cl and 1 and 2 wt.% trisilanol isobutyl-poly(hedral oligomeric silsesquioxane) (POSS) were high-speed melt spun over the range of take-up speeds 1 to 4.5 km/min, and the effects of nanoparticle type on the fiber properties were investigated. The clay and POSS nanocomposites exhibited quite different melt spinning behaviors. The neat PET and PET/POSS nanocomposites showed a neck-like deformation distinctly from the take-up speed of 3.5 and 3 km/min while PET/clay nanocomposites did not show any neck-like deformation over the entire spinning speed range. In comparison with nanocomposite chips clay gave rise to re-aggregation of nanoparticles whereas POSS made little change in dispersion. Clay suppressed the crystallization of PET during high-speed spinning although it had more effective nucleation effects at the static state than POSS. Clay nanocomposite fibers gave lower modulus and higher elongation at break than PET fibers. On the other hand, the mechanical properties of POSS nanocomposite fibers were almost equal or slightly better than PET fibers.


Mail address: Byoung Chul Kim, Division of Applied Chemical and Bio Engineering, Hanyang University, 17, Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea. E-mail:

References

Billmeyer, F. W.: Textbook of Polymer Science, 3rd edition, John Wiley & Sons, New York (1984)Suche in Google Scholar

Chang, J. H., Mun, M. K., “Synthesis and Characterization of Poly(butylene terephthalate) Nanocomposite Fibers: Thermo-Mechanical Properties and Morphology”, J. Appl. Polym. Sci., 100, 12471254 (2006)10.1002/app.23500Suche in Google Scholar

Chang, J. H.et al., “Poly(ethylene terephthalate) Nanocomposite Fibers by In Situ Polymerization: The Thermomechanical Properties and Morphology”, J. Appl. Polym. Sci., 98, 20092016 (2005)10.1002/app.22382Suche in Google Scholar

Cho, J. W., Paul, D. R., “Nylon 6 Nanocomposites by Melt Compounding”, Polymer, 42, 10831094 (2001)10.1016/S0032-3861(00)00380-3Suche in Google Scholar

Doufas, A. K., et al., “Simulation of Melt Spinning Including Flow-induced Crystallization Part I. Model Development and Predictions”, J. Non-Newton. Fluid Mech., 92, 2766 (2000)10.1016/S0377-0257(00)00088-4Suche in Google Scholar

Fu, B. X., et al., “Crystallization Studies of Isotactic Polypropylene Containing Nanostructured Polyhedral Oligomeric Silsesquioxane Molecules under Quiescent and Shear Conditions”, J. Polym. Sci. Part B: Polym. Phys., 39, 27272739 (2001)10.1002/polb.10028Suche in Google Scholar

Giannelis, E. P., “Polymer-layered Silicate Nanocomposites: Synthesis, Properties and Applications”, Appl. Organometallic Chem., 12, 675680 (1998)10.1002/(SICI)1099-0739(199810/11)12:10/11<675::AID-AOC779>3.0.CO;2-VSuche in Google Scholar

Giannelis, E. P., “Polymer Layered Silicate Nanocomposites”, Adv. Mater., 8, 2935 (1996)10.1002/adma.19960080104Suche in Google Scholar

Giza, E., et al., “Fiber Structure Formation in High-speed Melt Spinning of Polyamide 6/Clay Hybrid Nanocomposite”, J. Macromol. Sci.-Phys., B39, 545559 (2000)10.1081/MB-100100403Suche in Google Scholar

Guan, G. H., et al., “Spinning and Properties of Poly(ethylene terephthalate)/Organomontmorillonite Nanocomposite Fibers”, J. Appl. Polym. Sci., 95, 14431447 (2005)10.1002/app.21387Suche in Google Scholar

Hahm, W. G., et al., “Analysis of Necking Deformation Behavior in High-speed In-line Drawing Process of Pet by On-line Diameter and Velocity Measurements”, Int. Polym. Proc.21, 536543 (2006)10.3139/217.0980Suche in Google Scholar

Hwang, S. H., et al., “Synthesis of Allylester Resin Tethered to Layered Silicates by In-situ Polymerization and its Nanocomposite”, Polym. Bull., 49, 329335 (2003)10.1007/s00289-002-0111-2Suche in Google Scholar

Kikutani, T., Kawahara, Y., Ogawa, N., Okuin, N., “Capturing of Real Image of Neck-like Deformation from High-speed Melt Spinning Line”, Sen-i Gakkaishi, 50, 561566 (1994)10.2115/fiber.50.12_561Suche in Google Scholar

Kikutani, T., et al., “Diameter Measurement in the Vicinity of Neck-like Deformation in High-speed Melt Spinning Process”, Sen-i Gakkaishi, 45, 441446 (1989)10.2115/fiber.45.11_441Suche in Google Scholar

Kikutani, T., et al., “On-line Measurement of Orientation Development in the High-speed Melt Spinning Process”, Polym. Eng. Sci., 39, 23492357 (1999)10.1002/pen.11623Suche in Google Scholar

Kriegel, R. M., et al., “Thermal Tranesterification of bBs(hydroxymethyl)propane-1,3-diyl Units in Poly(ethyl terephthalate) and Poly(butylene terephthalate): A Route to Thermoset Polyesters”, Macromolecules31, 24752479 (1998)10.1021/ma9710949Suche in Google Scholar

Messersmith, P. B., Giannelis, E. P., “Polymer-layered Silicate Nanocomposites: In Situ Intercalative Polymerization of ∊-Caprolactone in Layered Silicates”, Chem. Master., 6, 17191725 (1993)10.1021/cm00046a026Suche in Google Scholar

Patel, R. M., et al., “Dynamics and Structure Development during High-speed Melt Spinning of Nylon 6. II. Mathematical Modeling”, J. Appl. Polym. Sci., 42, 16711682 (1991)10.1002/app.1991.070420622Suche in Google Scholar

Phang, I. Y., et al., “Crystallization and Melting Behavior of Polyester/Clay Nanocomposites.”, Polym. Int., 53, 12821289 (2004)10.1002/pi.1513Suche in Google Scholar

Pinnavaia, T. J., “Intercalated Clay Catalysts”, Sci., 220, 365371 (1983)10.1126/science.220.4595.365Suche in Google Scholar

Gilman, J. W., “Flammability and Thermal Stability Studies of Polymer Layered-silicate (Clay) Nanocomposites”, Appl. Clay Sci., 15, 3149 (1999)10.1016/S0169-1317(99)00019-8Suche in Google Scholar

Wang, D., et al., “A Comparison of Various Methods for the Preparation of Polystyrene and Poly(methyl methacrylate) Clay Nanocomposites”, Chem. Mater.14, 38373843 (2002)10.1021/cm011656+Suche in Google Scholar

Zeng, J., et al., “Reinforcement of Poly(ethylene terephthalate) Fibers with Polyhedral Oligomeric Silsesquioxanes (POSS)”, High Performance Polymers, 17, 403424 (2005)10.1177/0954008305055562Suche in Google Scholar

Zhang, G. Z., et al., “PET-clay Hybrids with Improved Tensile Strength”, Mater. Lett., 57, 18581862 (2003)10.1016/S0167-577X(02)01089-3Suche in Google Scholar

Zhao, Y., Schiraldi, D. A., “Thermal and Mechanical Properties of Polyhedral Oligomeric Silsesquioxane (Poss)/Polycarbonate Composites”, Polymer, 46, 1164011647 (2005)10.1016/j.polymer.2005.09.070Suche in Google Scholar

Ziabicki, A., “Mechanisms of ‘Neck-like’ Deformation in High-speed Melt Spinning. 1. Rheological and Dynamic Factors”, J. Non-Newton. Fluid Mech., 30, 141155 (1988)10.1016/0377-0257(88)85021-3Suche in Google Scholar

Ziabicki, A., Tian, J., “‘Necking’ in High-speed Spinning Revisited”, J. Non-Newton. Fluid Mech., 47, 5775 (1993)10.1016/0377-0257(93)80044-CSuche in Google Scholar

Zieminski, K. F., Spruiell, J. E., “On-line Studies and Computer Simulation of the Melt Spinning of Nylon-66 Filaments”, J. Appl. Polym. Sci., 35, 22232245 (1988)10.1002/app.1988.070350822Suche in Google Scholar

Received: 2007-8-3
Accepted: 2008-5-2
Published Online: 2013-04-06
Published in Print: 2008-09-01

© 2008, Carl Hanser Verlag, Munich

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.2127/html
Button zum nach oben scrollen