Home Solid and Microcellular Polylactide-Carbon Nanotube Nanocomposites
Article
Licensed
Unlicensed Requires Authentication

Solid and Microcellular Polylactide-Carbon Nanotube Nanocomposites

  • S. Pilla , A. Kramschuster , S. Gong , A. Chandra and L.-S. Turng
Published/Copyright: April 6, 2013
Become an author with De Gruyter Brill

Abstract

In this study, polylactide (PLA)-multi-walled carbon nanotube (MWCNT) nanocomposites were melt-compounded using a twin-screw extruder. Solid and microcellular tensile bar specimens were produced via conventional and microcellular injection molding, respectively. Various characterization techniques were applied to study the static and dynamic mechanical properties, degree of MWCNT dispersion, cell morphology, and crystallization behavior. The addition of a small amount of MWCNTs led to a decrease in the cell size and an increase in the cell density of the microcellular PLA specimens. A transmission electron microscopy analysis of the PLA-MWCNT specimens revealed a higher degree of MWCNT dispersion in the microcellular PLA-MWCNT composite compared with its solid counterpart, indicating that the microcellular injection molding process further dispersed the MWCNTs. For both solid and microcellular specimens, the addition of 1.5 wt% MWCNTs reduced the specific strength, specific toughness and strain-at-break while exerting less impact on the specific modulus. The storage modulus was not affected significantly with the addition of MWCNTs, but was found to be higher for the microcellular specimens compared with their solid counterparts. Finally, the crystallinity of PLA increased with the addition of MWCNTs.


Mail address: Shaoqin Gong, Department of Mechanical Engineering, University of Wisconsin-Milwaukee, USA. E-mail: , Lih-Sheng Turng, Polymer Engineering Center, Department of Mechanical Engineering, University of Wisconsin-Madison, USA. E-mail:

References

Anderson, T. L.: Fracture Mechanics, 2nd Edition, CRC Press, Boca Raton, p. 34, 322, 377 (1995)Search in Google Scholar

Andrews, R., Wisenberger, M. C., “Carbon Nanotube Polymer Composite”, Curr. Opin. Solid State Mater. Sci., 8, 317 (2004)10.1016/j.cossms.2003.10.006Search in Google Scholar

Baldwin, D. F., Suh, N. P., “Microcellular Poly(ethylene terephthalate) and Crystallizable Poly(ethylene terephthalate): Characterization of Process Variables”, SPE ANTEC Tech. Papers38, p. 1503 (1992)Search in Google Scholar

Bledzki, A. K., et al., “Microcellular Polymers and Composites Part1. Types of Foaming Agents and Technologies of Microcellular Processing”, Polimery, 51 (10), 697703 (2006)10.14314/polimery.2006.699Search in Google Scholar

Carole, T. M., et al., “Opportunities in the Industrial Biobased Products Industry”, App. Biochem. Biotechnol., 113–116, 871885 (2004)10.1385/ABAB:115:1-3:0871Search in Google Scholar

Chandra, A., et al., “Microstructure and Crystallography in Microcellular Injection-Molded Polyamide-6 Nanocomposite and Neat Resin”, Polym. Eng. Sci., 45(1), 5261 (2005)10.1002/pen.20229Search in Google Scholar

Chen, L., et al., “Effects of Shear Stress and Pressure Drop Rate on Microcellular Foaming Process”, J. Cell. Plast.37 (4), 353363 (2001)10.1106/VHC8-33K7-M1C7-0M2HSearch in Google Scholar

Collias, D. I., Baird, D. G., “Tensile Toughness of Microcellular Foams of Polystyrene, Styrene-Acrylonitrile Copolymer, and Polycarbonate, and the Effect of Dissolved Gas on the Tensile Toughness of the Same Polymer Matrices and Microcellular Foams”, Polym. Eng. Sci., 35(14), 11671177 (1995)10.1002/pen.760351407Search in Google Scholar

Collias, D. I., et al., “Impact Toughening of Polycarbonate by Microcellular Foaming”, Polymer, 35 (18), 39783983 (1994)10.1016/0032-3861(94)90283-6Search in Google Scholar

Garlotta, D., “A Literature Review of Poly(lactic acid)”, J. Polym. Environ., 9(2), 6384 (2002)10.1023/A:1020200822435Search in Google Scholar

Giannelis, E. P., “Polymer Layered Silicate Nanocomposites”, Adv. Mater., 8, 2935 (1996)10.1002/adma.19960080104Search in Google Scholar

Gong, S., et al., “Microcellular Injection Molding”, Int. Polym. Proc., 20, 20215 (2005)Search in Google Scholar

Gross, R. A., Kalra, B., “Biodegradable Polymers for the Environment”, Science, 297 (5582), 803807 (2002)10.1126/science.297.5582.803Search in Google Scholar

Han, X., et al., “Effect of Clay Surface Modification on the Polymer Nanocomposite Foam Structure”, ANTEC Ann. Tech. Conf., 2, 17231727 (2004)Search in Google Scholar

Jordan, J., et al., “Experimental Trends in Polymer Nanocomposites – a Review”, Mat. Sci. Eng. A, 393(1–2), 111 (2005)10.1016/j.msea.2004.09.044Search in Google Scholar

Juntunen, R. P., et al., “Impact strength of High Density Microcellular Poly(vinyl chloride) Foams”, J. Vinyl. Addit. Technol., 6(2), 9399 (2000)10.1002/vnl.10230Search in Google Scholar

Kharbas, H., et al., “Effect of Nano-fillers and Process Conditions on the Microstructure and Mechanical Properties of Microcellular Injection Molded Polyamide Nanocomposites”, Polym. Compos., 24(6), 655 (2003)10.1002/pc.10060Search in Google Scholar

Kinloch, A. J., Young, R. J.: Fracture Behavior of Polymers, Applied Science Publishers, London, 132, 147, 162 (1983)Search in Google Scholar

Kramschuster, A., et al., “Quantitative Study of Shrinkage and Warpage Behavior For Microcellular and Conventional Injection Molding”, Polym. Eng. Sci., 45(10), 14081418 (2005)10.1002/pen.20410Search in Google Scholar

Kramschuster, A., et al., “Microcellular Injection Molding of Polylactide-Montmorillonite Nanocomposites”, Society of Petroleum Engineers – 5th International Conference on Thermoplastic Foam, FOAMS 2006, 59–63 (2006)Search in Google Scholar

Kumar, V., et al., “Impact Strength of High Relative Density Solid State Carbon Dioxide Blown Crystallizable Poly(ethylene terephthalate) Microcellular Foams”, Cell. Polym., 19(1), 2537 (2000)Search in Google Scholar

Kumar, V., et al., Confernece on Foams, 117 (2000)Search in Google Scholar

Kuriam, J. V., “Sorona Polymer: Present status and future perspectives”, in Natural Fibers, Biopolymers, and Biocomposites, Mohanty, A. K., Misra, M., Drzal, L. T. (Editors), CRC Press, Boca Raton (2005)10.1201/9780203508206.ch15Search in Google Scholar

Kwag, C., et al., “Effects of Dissolved Gas on Viscoelastic Scaling and Glass Transition Temperature of Polystyrene Melts”, Ind. Eng. Chem. Res., 40(14), 3048 (2001)10.1021/ie000680eSearch in Google Scholar

Lee, L. J., et al., “Polymer Nanocomposites Foams”, Comp. Sci. Technol., 65(15–16), 23442363 (2005)a10.1016/j.compscitech.2005.06.016Search in Google Scholar

Lee, Y. H., et al., “HDPE-Clay Nanocomposite Foams Blown with Supercritical CO2”, J. Cell Plast., 41(5), 487502 (2005)b10.1177/0021955X05056964Search in Google Scholar

Li, T., et al., “Polylactide, Nanoclay and Core-shell Rubber Composites”, Polym. Eng. Sci., 46(10), 14191427 (2006)10.1002/pen.20629Search in Google Scholar

Lunt, J., “Large-scale Production, Properties and Commercial Applications of Polylactic Acid Polymers”, Polym. Degrad. Stab., 59(1–3), 145152 (1998)10.1016/S0141-3910(97)00148-1Search in Google Scholar

Martini, J. E., et al, “Production and Analysis of Microcellular Thermoplastic Foams”, SPE ANTEC Tech. Papers, 28, 674676 (1982)Search in Google Scholar

Matuana, L. M., et al., “Batch Process Microcellular Foaming of Poly (lactic acid)”, PPS-20 Symposium, Paper 125, University of Akron, Akron (2004)Search in Google Scholar

Matuana, L. M., et al., “Processing and Cell Morphology Relationships for Microcellular Foamed PVC/Wood-Fiber Composites”, Polym. Eng. Sci., 37(7), 11371147 (1997)10.1002/pen.11758Search in Google Scholar

Matuana, L. M., et al., “Structures and Mechanical Properties of Microcellular Foamed Polyvinyl Chloride”, Cell. Polym., 17(1), 116 (1998)Search in Google Scholar

Mohanty, A. K., et al., “Biofibres, Biodegradable Polymers and Biocomposites: An Overview”, Macromol. Mater. Eng., 276–277 (1), 124 (2000)10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-WSearch in Google Scholar

Naguib, H. E., et al., “Strategies for Achieving Ultra Low-Density Polypropylene Foams”, Polym. Eng. Sci., 42(7), 14811492 (2002)10.1002/pen.11045Search in Google Scholar

Nam, J. Y., et al., “Crystallization Behavior and Morphology of Biodegradable Polylactide/Layered Silicate Nanocomposite”, Macromolecules, 36, 71267131 (2003)10.1021/ma034623jSearch in Google Scholar

Nam, P. H., et al., “Foaming Processing and Cellular Structure of Polypropylene/Clay Nanocomposites“, Polym. Eng. Sci., 42 (9), 19071918 (2002)10.1002/pen.11083Search in Google Scholar

Nguyen, Q.-T., Baird, D. G., “Using SC-CO2 as a Processing Aid for Improving the Properties of Polymer Nanocomposites”, ANTEC Ann. Tech. Conf., 268272 (2006)Search in Google Scholar

Ray, S. S., Bousmina, M., “Biodegradable Polymers and their Layered Silicate Nanocomposites in Greening the 21st Century Materials World”, Prog. Mater. Sci., 50, 9621079 (2005)10.1016/j.pmatsci.2005.05.002Search in Google Scholar

Ray, S. S., et al., “New Polylactide/Layered Silicate Nanocomposites. 1. Preparation, Characterization, and Properties”, Macromolecules, 35, 31043110 (2002)10.1021/ma0210731Search in Google Scholar

Ray, S. S., Okamoto, M., “New Polylactide/Layered Silicate Nanocomposites. 6. Melt Rheology and Foam Processing”, Macro. Mat. Eng., 288, 936944 (2003)e10.1002/mame.200300156Search in Google Scholar

Ray, S. S., et al., “New Polylactide/Layered Silicate Nanocomposites. 2. Concurrent Improvements of Material Properties, Biodegradability and Melt Rheology”, Polymer, 44, 857866 (2003)a10.1016/S0032-3861(02)00818-2Search in Google Scholar

Ray, S. S., et al., “New Polylactide/Layered Silicate Nanocomposites. 5. Designing of Materials with Desired Properties”, Polymer, 44, 66336646 (2003)d10.1016/j.polymer.2003.08.021Search in Google Scholar

Ray, S. S., et al., “New Polylactide/Layered Silicate Nanocomposites. 3. High Performance Biodegradable Materials”, Chem. Mat., 15, 14561465 (2003)b10.1021/cm020953rSearch in Google Scholar

Ray, S. S., et al., “New Polylactide/Layered Silicate Nanocomposites. 4. Structure, Property and Biodegradability”, Comp. Int., 10(4–5), 435450 (2003)c10.1163/156855403771953687Search in Google Scholar

Sandler, J. K. W., et al., “Development of a Dispersion Process for Carbon Nanotubes in an Epoxy Matrix and the Resulting Electrical Properties”, Polymer, 40 (21), 596771 (1999)10.1016/S0032-3861(99)00166-4Search in Google Scholar

Sarasua, J.-R., et al., “Crystallization and Melting Behavior of Polylactides”, Macromolecules, 31, 38953905 (1998)10.1021/ma971545pSearch in Google Scholar

Seeler, K. A., Kumar, V., “Fatigue of Notched Microcellular Polycarbonate”, Cell. Polym., ASME, 38, p. 93108 (1992)Search in Google Scholar

Seeler, K. A., Kumar, V., “Tension-tension Fatigue of Microcellular Polycarbonate: Initial Results”, J. of Rein. Plas. and Comp., 12(3), 359376 (1993)10.1177/073168449301200308Search in Google Scholar

Shen, J., et al., “Nucleation and Reinforcement of Carbon Nanofibers on Polystyrene Nanocomposites Foam”, ANTEC Ann. Tech. Conf., 2597 (2005)Search in Google Scholar

Shimbo, M., et al., “Viscoelastic Behavior of Microcellular Plastics”, Polym. Mater. Sci. Eng., Proc. ACS Div. Polym. Mat. Sci. and Eng., 67, 512513 (1992)Search in Google Scholar

Shimbo, M., et al., “Viscoelastic Behavior of Microcellular Plastics With Varying Cell Size”, Polym. Eng. Sci., 35(17), 1387 (1995)10.1002/pen.760351710Search in Google Scholar

Shimbo, M., et al., “Viscoelastic Behavior of Microcellular Plastics with Varying Cell Size”, Polym. Eng. Sci., 35(17), 1387 (1995)10.1002/pen.760351710Search in Google Scholar

Suh, N. P., “Microcellular Plastics, Innovation in Polymer Processing”, in Stevenson, J. F. (Eds.), Hanser Publishers, Munich (1996)Search in Google Scholar

Van Vlack, L. H.: Elements of Materials Science and Engineering, 6th Edition, Addison-Wesley Publishing Company, Boston, MA, p. 271 (1989)Search in Google Scholar

Wang, K. H., et al., “Optimum Content of Clay for Microcellular LDPE/Clay Nanocomposite Foams Blown with CO2”, ANTEC Ann. Tech. Conf., 2510 (2004)Search in Google Scholar

Wing, G., et al., “Time Dependent Response of Polycarbonate And Microcellular Polycarbonate”, Polym. Eng. Sci., 35(8), 673679 (1995)10.1002/pen.760350807Search in Google Scholar

Wang, Y., et al., “Influence of Semicrystalline Morphology on the Glass Transition of Poly(L-lactic acid)”, Macromol. Chem. Phys., 207, 12621271 (2006)10.1002/macp.200600114Search in Google Scholar

Yasuniwa, M., et al., “Thermal Analysis of the Double-Melting Behavior of Poly(L-lactic acid)”, J. Polym. Sci., Part B: Polym. Phys., 42, 2532 (2004)10.1002/polb.10674Search in Google Scholar

Yuan, M., Turng, L.-S., “Microstructure and Mechanical Properties of Microcellular Injection Molded Polyamide-6 Nanocomposites”, Polymer, 46 (18), 72737292 (2005)10.1016/j.polymer.2005.06.054Search in Google Scholar

Yuan, M., et al., “Study of Injection Molded Microcellular Polyamide-6 Nanocomposites”, Polym. Eng. Sci., 44(4), 673686 (2004)10.1002/pen.20061Search in Google Scholar

Yuan, M., et al., “Effects Of Nano- and Micro- Fillers and Processing Parameters on Injection Molded Microcellular Composites”, Polym. Eng. Sci., 45, 773788 (2005)10.1002/pen.20327Search in Google Scholar

Zheng, W., Park, C. B., “Clay Exfoliation and Content Effect on Nylon Nanocomposites Foams”, ANTEC Ann. Tech. Conf., 171 (2005)Search in Google Scholar

Received: 2007-5-7
Accepted: 2007-8-20
Published Online: 2013-04-06
Published in Print: 2007-12-01

© 2007, Carl Hanser Verlag, Munich

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Special Issue on Biobased Polymers
  5. Invited Papers
  6. Crystallization and Mechanical Propertiesof Poly (D, L) Lactide-based Blown Films
  7. Rheological Behavior and Modeling of Thermal Degradation of Poly(∊-Caprolactone) and Poly(L-Lactide)
  8. Rheological Evaluation and Observations of Extrusion Instabilities of Biodegradable Polyesters
  9. Biaxial Orientation of Polylactide/Thermoplastic Starch Blends
  10. Effects of Starch Types on Mechanical Properties of Poly(lactic acid)/Starch Composites
  11. Solid and Microcellular Polylactide-Carbon Nanotube Nanocomposites
  12. Tapioca Starch-poly (lactic acid)-based Nanocomposite Foams as Affected by Type of Nanoclay
  13. Injection Molded Solid and Microcellular Polylactide Compounded with Recycled Paper Shopping Bag Fibers
  14. Fabrication of Porous 3-D Structure from Poly(L-lactide)-based Nanocomposite Foam via Enzymatic Degradation
  15. The Linear Viscoelastic Behavior of a Series of 3-Hydroxybutyrate-based Copolymers
  16. New Developments in Biodegradable Starch-based Nanocomposites
  17. Viscous Properties of Thermoplastic Starches from Different Botanical Origin
  18. Thermoplastic Foams from Zein and Gelatin
  19. Improvement of the Mechanical Properties of Soy Protein Isolate Based Plastics through Formulation and Processing
  20. Biocomposites Based on Bacterial Cellulose and Apple and Radish Pulp
  21. Preparation and Properties of Metallocene-catalyzed PE/Starch Nanocomposites: Role of Nanocompatibilizer
  22. Evaluation of Properties and Biodeterioration Potential of Polyethylene and Aliphatic Polyester Blends
  23. PPS News
  24. PPP News
  25. Seikei-Kakou Abstracts
  26. Seikei-Kakou Abstracts
Downloaded on 30.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.2071/pdf
Scroll to top button