Startseite Biocomposites Based on Bacterial Cellulose and Apple and Radish Pulp
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Biocomposites Based on Bacterial Cellulose and Apple and Radish Pulp

  • S. Gea , F. G. Torres , O. P. Troncoso , C. T. Reynolds , F. Vilasecca , M. Iguchi und T. Peijs
Veröffentlicht/Copyright: 6. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Bacterial cellulose (BC) pellicles obtained from an Acetobacter xylinum culture were disintegrated using mechanical methods to be used as reinforcement to produce biocomposite sheets with Apple and Radish Pulp. The nanosize disintegrated BC pellicles were blended with microsize apple and radish pulp in the wet state and then hot pressed to produce paper-like sheets.

Thermal analysis was carried out by Thermogravimetry Analysis (TGA). Mechanical properties were assessed by Quasistatic Tensile Tests and Dynamic Mechanical Analysis (DMA). High tensile moduli were obtained (up to 8 GPa) and a nearly linear dependence of Young's modulus on the BC volume fraction was observed. Morphological characterisation of biocomposite sheets and fracture surfaces performed by Scanning Electron Microscopy (SEM) revealed the structure of the disintegrated cellulose network and the failure mechanisms of the biocomposites.


Mail address: Fernando G. Torres, Department of Mechanical Engineering, Catholic University of Peru, Lima 32, Peru. E-mail:
∗∗ Ton Peijs, Dept. of Materials, Queen Mary University of London, Mile End Road, E14NS London, UK. E-mail:

References

Asrar, J., Hill, J. C., “Biosynthetic Processes for Linear Polymers”, J. Appl. Polym. Sci., 83, 457483 (2002)10.1002/app.2253Suche in Google Scholar

Bourquin, L. D., et al., “Vegetable Fiber Fermentation by Human Fecal Bacteria: Cell Wall Polysaccharide Disappearance and Short Chain Fatty Acid Production during in Vitro Fermentation and Water Holding Capacity of Unfermented Residues”, J. Nutrition, 123, 860869 (1993)10.1093/jn/123.5.860Suche in Google Scholar

Chiellini, E., et al., “Composite Films Based on Biorelated Agro-Industrial Waste and Poly(vinyl alcohol). Preparation and Mechanical Properties Characterization”, Biomacromolecules, 2, 10291037 (2001)10.1021/bm010084jSuche in Google Scholar

Cox, H. L., “The Elasticity and Strength of Paper and other Fibrous Materials”, Br. J. Appl. Phys., 3, 7279 (1952)10.1088/0508-3443/3/3/302Suche in Google Scholar

El-Saied, H., et al., “Research Progress in Friendly Environmental Technology for the Production of Cellulose Products (Bacterial Cellulose and its Application)”, Polym. Plast. Technol. Eng., 43, 797820 (2004)10.1081/PPT-120038065Suche in Google Scholar

Fontana, J. D., et al., “Acetobacter Cellulose Pellicle as a Temporary Skin Substitute”, Appl. Biochem. Biotechnol., 24–25, 253264 (1990)10.1007/BF02920250Suche in Google Scholar

George, J., et al., “Characterization of Chemically Treated Bacterial (Acetobacter xylinum) Biopolymer: Some Thermo-mechanical Properties”, Int. J. Biol. Macromol., 37, 189194 (2005)10.1016/j.ijbiomac.2005.10.007Suche in Google Scholar

Gheyas, F., et al., “Dietary Fibre Content of Thirteen Apple Cultivars”, J. Sci. Food Agric., 75, 333340 (1997)10.1002/(SICI)1097-0010(199711)75:3<333::AID-JSFA883>3.0.CO;2-RSuche in Google Scholar

Gindl, W., Keckes, J., “Tensile Properties of Cellulose Acetate Butyrate Composites Reinforced with Bacterial Cellulose”, Comp. Sci. Technol., 64, 24072413 (2004)10.1016/j.compscitech.2004.05.001Suche in Google Scholar

Hestrin, S., Schramm, M., “Synthesis of Cellulose by Acetobacter xylinum. II. Preparation of Freeze-dried Cells Capable of Polymerizing Glucose to Cellulose”, Biochem. J., 58, 345352 (1954)Suche in Google Scholar

Iguchi, M., et al., “Review Bacterial Cellulose – a Masterpiece of Nature's Arts”, J. Mat. Sci., 35, 261270 (2000)10.1023/A:1004775229149Suche in Google Scholar

Iwata, T., et al., “Affinity of Hemicellulose for Cellulose Produced by Acetobacter Xylinum”, Cellulose, 5, 215228 (1998)10.1023/A:1009237401548Suche in Google Scholar

Klemm, D., et al., “Bacterial Synthesized cellulose-artificial Blood Vessels for Microsurgery”, Prog. Polym. Sci., 26, 15611603 (2001)10.1016/S0079-6700(01)00021-1Suche in Google Scholar

Kouda, T., et al., “Characterization of Non-newtonian Behavior during Mixing of Bacterial Cellulose in a Bioreactor”, J. Ferment. Bioeng., 82, 382386 (1996)10.1016/0922-338X(96)89155-0Suche in Google Scholar

Kouda, T., Yano, H., Yoshinaga, F., “Effect of Agitator Configuration on Bacterial Cellulose Productivity in Aerated and Agitated Culture”, J. Ferment. Bioeng., 83, 371376 (1997)10.1016/S0922-338X(97)80144-4Suche in Google Scholar

Krenchel, H.: Fibre Reinforcement, Akademisk Forlag, Copenhagen (1964)Suche in Google Scholar

Lima, D. U., et al., “Seed Storage Hemicelluloses As Wet-end Additives in Papermaking”, Carbohydr. Polym., 52, 367373 (2003)10.1016/S0144-8617(03)00008-0Suche in Google Scholar

Mormino, R., Bungay, H., “Composites of Bacteriall Cellulose and Paper Made with a Rotating Disk Bioreactor”, App. Microbiol. Biotechnol., 62, 503506 (2003)10.1007/s00253-003-1377-5Suche in Google Scholar

Nakagaito, A. N., et al., “Acterial Cellulose: the Ultimate Nanoscalar Cellulose Morphology for the Production of High Strength Composites”, App. Phys. A, 80, 9397 (2005)10.1007/s00339-004-2932-3Suche in Google Scholar

Nogi, M., et al., “Optically Transparent Bionanofiber Composites with Low Sensitivity to Refractive Index of the Polymer Matrix”, App. Phys. Lett., 87, 2431110 (2005)10.1063/1.2146056Suche in Google Scholar

Orfao, J. J. M., et al., “Pyrolysis Kinetics of Lignocellulosic Materials-three Independent Reactions Model”, Fuel, 78, 349358 (1999)10.1016/S0016-2361(98)00156-2Suche in Google Scholar

Ramiah, M. V., “Thermogravimetric and Differential Thermal Analysis of Cellulose, Hemicellulose, and Lignin”, J. App. Polym. Sci., 14, 13231337 (1970)10.1002/app.1970.070140518Suche in Google Scholar

Roman, M., Winter, W. T., “Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose”, Biomacromolecules, 5, 16711677 (2004)10.1021/bm034519+Suche in Google Scholar

Sattler, K., Fiedler, S., “Production and Application of Bacterial Cellulose: II. Cultivation in a Rotating Drum Fermentor”, Zentralbl. Microbiol., 145, 247252 (1990)Suche in Google Scholar

Serafica, G., et al., “Inclusion of Solid Particles in Bacterial Cellulose”, App. Microbiol. Biotechnol., 58, 756760 (2002)10.1007/s00253-002-0978-8Suche in Google Scholar

Suarez-Garcia, F., et al., “A Comparative Study Of The Thermal Decomposition of Apple Pulp in the Absence and Presence of Phosphoric Acid”, Polym. Degrad. Stab., 75, 375383 (2002)10.1016/S0141-3910(01)00243-9Suche in Google Scholar

Svensson, A., et al., “Bacterial Cellulose as a Potential Scaffold for Tissue Engineering of cartilage”, Biomaterials, 26, 419431 (2005)10.1016/j.biomaterials.2004.02.049Suche in Google Scholar PubMed

Watanabe, K., et al., “Structural Features and Properties of Bacterial Cellulose Produced in Agitated Culture”, Cellulose, 5, 187200 (1998)10.1023/A:1009272904582Suche in Google Scholar

Yamanaka, S., et al., “The Structure and Mechanical Properties of Sheets Prepared from Bacterial Cellulose”, J. Mat. Sci., 24, 31413145 (1989)10.1007/BF01139032Suche in Google Scholar

Yamanaka, S., et al., “Structural Modification of Bacterial Cellulose”, Cellulose, 7, 213225 (2000)10.1023/A:1009208022957Suche in Google Scholar

Yano, H., et al., “Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers”, Adv. Mater., 17, 153155 (2005)10.1002/adma.200400597Suche in Google Scholar

Received: 2007-4-27
Accepted: 2007-7-25
Published Online: 2013-04-06
Published in Print: 2007-12-01

© 2007, Carl Hanser Verlag, Munich

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Special Issue on Biobased Polymers
  5. Invited Papers
  6. Crystallization and Mechanical Propertiesof Poly (D, L) Lactide-based Blown Films
  7. Rheological Behavior and Modeling of Thermal Degradation of Poly(∊-Caprolactone) and Poly(L-Lactide)
  8. Rheological Evaluation and Observations of Extrusion Instabilities of Biodegradable Polyesters
  9. Biaxial Orientation of Polylactide/Thermoplastic Starch Blends
  10. Effects of Starch Types on Mechanical Properties of Poly(lactic acid)/Starch Composites
  11. Solid and Microcellular Polylactide-Carbon Nanotube Nanocomposites
  12. Tapioca Starch-poly (lactic acid)-based Nanocomposite Foams as Affected by Type of Nanoclay
  13. Injection Molded Solid and Microcellular Polylactide Compounded with Recycled Paper Shopping Bag Fibers
  14. Fabrication of Porous 3-D Structure from Poly(L-lactide)-based Nanocomposite Foam via Enzymatic Degradation
  15. The Linear Viscoelastic Behavior of a Series of 3-Hydroxybutyrate-based Copolymers
  16. New Developments in Biodegradable Starch-based Nanocomposites
  17. Viscous Properties of Thermoplastic Starches from Different Botanical Origin
  18. Thermoplastic Foams from Zein and Gelatin
  19. Improvement of the Mechanical Properties of Soy Protein Isolate Based Plastics through Formulation and Processing
  20. Biocomposites Based on Bacterial Cellulose and Apple and Radish Pulp
  21. Preparation and Properties of Metallocene-catalyzed PE/Starch Nanocomposites: Role of Nanocompatibilizer
  22. Evaluation of Properties and Biodeterioration Potential of Polyethylene and Aliphatic Polyester Blends
  23. PPS News
  24. PPP News
  25. Seikei-Kakou Abstracts
  26. Seikei-Kakou Abstracts
Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.2059/html
Button zum nach oben scrollen