Home Viscoelastic Properties of Flexible Organic Fiber Composites
Article
Licensed
Unlicensed Requires Authentication

Viscoelastic Properties of Flexible Organic Fiber Composites

  • B. Hausnerová , N. Zdražilová , T. Kitano and P. Sáha
Published/Copyright: April 30, 2013
Become an author with De Gruyter Brill

Abstract

In this paper, molten high density polyethylene (HDPE) was compounded with four kinds of high performance organic fibers: two types of aramid (KF29 and KF49), liquid crystalline polymer (LCP) and poly(vinyl alcohol) (VF), differing in their chemical structure and fiber lengths. From the SEM pictures, it is observed that shape and size of these organic fibers maintained almost the same even after cutting in pellets, following the mixing process. VF/HDPE and LCP/HDPE systems show generally lower rates of increase of both storage modulus and dynamic viscosity with fiber content than KF/HDPE composites. Comparison of these functions at the fixed fiber content has shown that the most effective parameter, affecting the viscoelastic behaviour of organic fiber filled systems, seems to be their rigidity/flexibility in the molten state. The influence of fiber rigidity/flexibility becomes gradually lower with the increase of both strain amplitude and angular frequency. The parameters of the equations describing relationship between relative values of viscoelastic functions and fiber content were found to be largely dependent on fiber content. Such finding remarkably differs from behaviour of short inorganic fiber filled systems, where these variables maintained constant values.


Mail address: B. Hausnerová, Tomas Bata University in Zlín, Faculty of Technology, Polymer Centre, TGM 275, 762 72 Zlín, Czech Republic E-mail:

References

1 Czarnecki, L., White, J. L.: J. Appl. Polym. Sci.25, p. 1217 (1980).10.1002/app.1980.070250623Search in Google Scholar

2 White, J. L., Czarnecki, I., Tanaka, H.: Rubber Chem. Technol.53, p. 823 (1980).10.5254/1.3535062Search in Google Scholar

3 Mutel, A. T., Kamal, M. R.: Polym. Compos.5, p. 29 (1984).10.1002/pc.750050107Search in Google Scholar

4 Kitano, T., Funabashi, M., Klason, C., Kubat, J.: Int. Polym. Process.3, p. 67 (1988).10.3139/217.880067Search in Google Scholar

5 Metzner, A. B.: J. Rheol.29, p. 739 (1985).10.1122/1.549808Search in Google Scholar

6 Shenoy, A. V.: Rheology of Filled Polymer Systems. Kluwer Academic Publishers, Dordrecht (1999).10.1007/978-94-015-9213-0Search in Google Scholar

7 Gupta, R. K.: Polymer and Composite Rheology. Marcel Dekker, New York (2000).10.1201/9781482273700Search in Google Scholar

8 Ono, Y., Tanigaki, T., Yamaguchi, K., Tanino, K.: Kobunshi Ronbunshu46, p. 389 (1989).10.1295/koron.46.389Search in Google Scholar

9 Franzen, B., Klason, C., Kubat, J., Kitano, T.: Composites20, p. 65 (1989).10.1016/0010-4361(89)90684-8Search in Google Scholar

10 Kitano, T., Kataoka, T., Nagatsuka, Y.: Rheol. Acta23, p. 408 (1984).10.1007/BF01329193Search in Google Scholar

11 Kutty, S. K. N., Nando, G. B.: J. Appl. Polym. Sci.43, p. 1913 (1991).10.1002/app.1991.070431016Search in Google Scholar

12 Rajabian, M., Ait-Kadi, A.: SPE ANTEC Tech. Papers53, p. 1183 (1995).Search in Google Scholar

13 Wortmann, F. J., Schulz, K. V.: Polymer36, p. 2363 (1995).10.1016/0032-3861(95)97334-CSearch in Google Scholar

14 Nishitani, Y., Sekigushi, I., Hausnerova, B., Kitano, T.: Polym. Polym. Compos.9, p. 199 (2001).10.1177/096739110100900306Search in Google Scholar

15 Kitano, T., Haghni, E., Tanegashima, T., Saha, P.: Polym. Compos.21, p. 493 (2000).10.1002/pc.10204Search in Google Scholar

16 Kitano, T., Hashmi, S. A. R., Chand, N.: Appl. Rheol.11, p. 258 (2001).10.1515/arh-2001-0014Search in Google Scholar

17 Hashmi, S. A. R., Kitano, T., Vashishtha, S. R., Chand, N.: Indian J. Eng. Mater. Sci.9, p. 289 (2002).Search in Google Scholar

18 Hashmi, S. A. R., Kitano, T., Chand, N.: Polym. Compos.24, p. 149 (2003).10.1002/pc.10015Search in Google Scholar

19 Hashmi, S. A. R., Kitano, T., Chand, N.: Polym. Compos.23, p. 500 (2003).10.1002/pc.10451Search in Google Scholar

20 Kitano, T., Kataoka, T., Nagatsuka, Y.: Rheol. Acta23, p. 20 (1984).10.1007/BF01333872Search in Google Scholar

21 Maron, S. H., Pierce, P. E.: J. Colloid. Sci.11, p. 80 (1956).10.1016/0095-8522(56)90023-XSearch in Google Scholar

22 Poslinski, A. J., Ryan, M. F., Gupta, R. K., Seshadri, S. G., Frechette, F. J.: J. Rheol.32, p. 703 (1988).10.1122/1.549987Search in Google Scholar

23 Poslinski, A. J., Ryan, M. F., Gupta, R. K., Seshadri, S. G., Frechette, F. J.: J. Rheol.32, p. 751 (1988).10.1122/1.549991Search in Google Scholar

24 Kitano, T., Kataoka, T., Shirota, T.: Rheol. Acta20, p. 207 (1981).10.1007/BF01513064Search in Google Scholar

Received: 2004-5-14
Accepted: 2004-11-18
Published Online: 2013-04-30
Published in Print: 2005-03-01

© 2005, Carl Hanser Verlag, Munich

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.1853/pdf?lang=en
Scroll to top button