Home Non-linear Crystalline Spherulitic Growth Behavior for LLDPE
Article
Licensed
Unlicensed Requires Authentication

Non-linear Crystalline Spherulitic Growth Behavior for LLDPE

  • M. R. Kamal and L. Feng
Published/Copyright: April 30, 2013
Become an author with De Gruyter Brill

Abstract

Nonlinear growth behavior was observed in two crystallization regimes, depending on the temperature. Non-linearity may be explained by the reduction of the concentration of crystallizable ethylene sequences (CES) in the melt phase. In the two regimes, the concentration of uncrystallizable ethylene sequences (UCES) increases, as the crystallization time increases, because UCES are continuously excluded from the crystal lattice into the melt phase. An empirical equation is proposed to describe the melting temperature of the crystal stem with the maximum possible length, TC, n*m, in nonlinear growth processes, assuming that the diffusion layer is negligible. A modified form of the Hoffman-Lauritzen equation (MHL) describes well the crystallization growth kinetics of LLDPE spherulites in the non-linear growth region.


Mail address: M. R. Kamal, Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada H3A 2B2 E-mail:

References

1 Hoffman, J. D., Davis, G. T., Lauritzen, J. I., in: Treatise on Solid State Chemistry, Hannay, N. B. (Ed.), Plenum Press, New York (1976).Search in Google Scholar

2 Hoffman, J. D., Miller, R. L.: Polymer38, p. 3151 (1997).10.1016/S0032-3861(97)00071-2Search in Google Scholar

3 Phillips, P. J.: Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.)20, p. 438 (1979).Search in Google Scholar

4 Kamal, M. R., Feng, L., Huang, T.: Can. J. Chem. Eng.80, p. 432 (2002).10.1002/cjce.5450800312Search in Google Scholar

5 Feng, L., Kamal, M. R.: Polym. Eng. Sci.45, p. 74 (2005).10.1002/pen.20231Search in Google Scholar

6 Keith, H. D., Padden, F. J.: J. Appl. Phys.35, p. 1286 (1964).10.1063/1.1713607Search in Google Scholar

7 Okada, T., Saito, H., Inoue, T.: Macromolecules23, p. 3865 (1990).10.1021/ma00218a024Search in Google Scholar

8 Okada, T., Saito, H., Inoue, T.: Polymer34, p. 4752 (1993).10.1016/0032-3861(93)90713-KSearch in Google Scholar

9 Okada, T., Saito, H., Inoue, T.: Polymer35, p. 5699 (1994).10.1016/S0032-3861(05)80044-8Search in Google Scholar

10 Wu, L., Lisowski, M., Talibuddin, S., Runt, J.: Macromolecules32, p. 1576 (1999).10.1021/ma981169oSearch in Google Scholar

11 Saito, H., Okada, T., Hamane, T., Inoue, T.: Macromolecules24, p. 4446 (1991).10.1021/ma00015a031Search in Google Scholar

12 Lambert, W. S., Phillips, P. J.: Macromolecules27, p. 3537 (1994).10.1021/ma00091a014Search in Google Scholar

13 Rodriguez–Arnold, J., Bu, Z., Cheng, S. Z. D., Hsieh, E. T., Johnson, T. W., Geerts, R. G., Palackal, S. J., Hawley, G. R., Welch, M. B.: Polymer35, p. 5194 (1994).10.1016/0032-3861(94)90469-3Search in Google Scholar

14 Abo el Maaty, M. I., Hosier, I. L., Bassett, D. C.: Macromolecules31, p. 153 (1998).10.1021/ma9711396Search in Google Scholar

15 Abo el Maaty, M. I., Bassett, D. C., Olley, R. H., Jääskeläinen, P.: Macromolecules31, p. 7800 (1998).10.1021/ma980426mSearch in Google Scholar

16 Feng, L., Kamal, M. R.: Can. J. Chem. Eng.82 (in press).Search in Google Scholar

17 Alamo, R. G., Mandelkern, L.: Thermochim. Acta238, p. 155 (1994).10.1016/S0040-6031(94)85210-3Search in Google Scholar

18 Mandelkern, L., Alamo, R. G.: In Physical Properties of Polymers Handbook, Mark, J. E. (Ed.) American Institute of Physics, New York: Woodbury (1996).Search in Google Scholar

19 Fletcher, D. P., Klein, J.: Polym. Commun.26, p. 2 (1985).Search in Google Scholar

Received: 2004-10-14
Accepted: 2004-10-14
Published Online: 2013-04-30
Published in Print: 2005-03-01

© 2005, Carl Hanser Verlag, Munich

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.1845/pdf?lang=en
Scroll to top button