Injection Molding Technology for High Speed Optical Disk
-
S. J. Park
, S. K. Kim , K. H. Yoon and T. H. Kwon
Abstract
Recently great efforts have been made to increase the data access speed and the data storage density of the optical memory disks such as CD-ROM, DVD, ASMO disk, etc. In the viewpoint of increasing the data access speed of the optical disks, it is of great importance to characterize accurately the vibration phenomena of the rotating disk, which is related to the critical speed and the characteristics of the frequency response. In this paper, towards the goal of increasing the data access speed of the optical disks, we have proposed a novel method for improved characteristics of disk vibration without deteriorating any other specification for the optical memory disks such as geometrical and optical characteristics. A possible idea to improve the vibration characteristics of the optical disk is that the tensile initial stress in the radial direction is to be imposed within the optical disk on purpose. By the synergy effect from the residual (initial) tensile stress frozen within the optical disk combined with the stress induced by the centrifugal force occurring in rotating the optical disk, the stiffness of the disk would increase to have a stronger resistance to the disturbance resulting in increase of critical speed. With such a synergy effect in mind, modifications related to the optical disk substrate design, injection mold design and processing conditions of injection molding were presented and partially evaluated. The computer simulation and experiments indicate that the suggested ideas clearly improve the characteristics of disk vibration without deteriorating any other specification for the optical memory disks.
© 2001, Carl Hanser Verlag, Munich
Articles in the same Issue
- Editorial
- Tenth of a Series: Pioneer of The Polymer Thermoset Industry – Leo-Hendrik Baekeiand
- Screw Extrusion
- Effects of Process Conditions on the Dissolution of Carbon Dioxide in PS in Foaming Extruders
- The Design of Extrusion Screws: An Optimization Approach
- Generalized Flow of Ellis Fluid in the Screw Channel
- Generalized Flow of Ellis Fluid in the Screw Channel
- Experimental Study of Melting in an Intermeshing Counter-Rotating Twin Screw Extruder
- Reactive Extrusion
- A Dynamic Model for Multiple Steady States in Reactive Extrusion
- Fiber and Film
- PA612 Double Bubble Tubular Film Process – Processability and Structure Development
- Injection Molding
- Injection Molding Technology for High Speed Optical Disk
- Three-dimensional Filling and Post-filling Simulation of Polymer Injection Molding
- Cold Rolling
- Microstructure and Prediction of Stress-strain Behaviour of Cold-rolled PP Sheets
Articles in the same Issue
- Editorial
- Tenth of a Series: Pioneer of The Polymer Thermoset Industry – Leo-Hendrik Baekeiand
- Screw Extrusion
- Effects of Process Conditions on the Dissolution of Carbon Dioxide in PS in Foaming Extruders
- The Design of Extrusion Screws: An Optimization Approach
- Generalized Flow of Ellis Fluid in the Screw Channel
- Generalized Flow of Ellis Fluid in the Screw Channel
- Experimental Study of Melting in an Intermeshing Counter-Rotating Twin Screw Extruder
- Reactive Extrusion
- A Dynamic Model for Multiple Steady States in Reactive Extrusion
- Fiber and Film
- PA612 Double Bubble Tubular Film Process – Processability and Structure Development
- Injection Molding
- Injection Molding Technology for High Speed Optical Disk
- Three-dimensional Filling and Post-filling Simulation of Polymer Injection Molding
- Cold Rolling
- Microstructure and Prediction of Stress-strain Behaviour of Cold-rolled PP Sheets