Home Melting Temperature Characteristics for Polyethylenes from Crystal Size Distribution
Article
Licensed
Unlicensed Requires Authentication

Melting Temperature Characteristics for Polyethylenes from Crystal Size Distribution

  • L. Feng and M. R. Kamal
Published/Copyright: March 26, 2013
Become an author with De Gruyter Brill

Abstract

Semi-crystalline polymers exhibit broad and multiple peaks in their melting traces. Thus, the melting temperature characteristics of polymers should consider both melting peak positions and melting temperature polydispersity. In this work, the effective melting temperature and temperature polydispersity are defined and calculated from DSC traces, using the crystal size number distribution and the melting temperature equation. Three methods are proposed for calculating melting temperature characteristics. These methods are based on: (i) average crystal size, (ii) the crystal stem number distribution function, and (iii) the monomer structural unit distribution function. They were employed to analyze the isothermal and non-isothermal experimental results for polyethylene polymers, especially linear low-density polyethylene copolymers. The first method, based on the value of average crystal size, gives the most reasonable results, taking into consideration agreement with experimental observations and structural data.


Mail address: M. R. Kamal, Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada H3A 2B2. E-mail:

References

1Feng, M. R., Huang, L. T.: Can. J. Chem. Eng. 80, p. 432 (2002)10.1002/cjce.5450800312Search in Google Scholar

2Wunderlich, B.: Macromolecular Physics. Vol. 3, Academic Press, London (1980)Search in Google Scholar

3Sanchez, I. C., Eby, R. K.: Macromolecules8, p. 638 (1975)10.1021/ma60047a012Search in Google Scholar

4Crist, B., Mirabella, F. M.: J. Polym. Sci., Polym. Phys. 37, p. 3131 (1999)10.1002/(SICI)1099-0488(19991101)37:21<3131::AID-POLB22>3.0.CO;2-MSearch in Google Scholar

5Hoffman, J. D., Weeks, J. J.: J. Res. Natl. Bur. Stand. A66 p. 13 (1962)10.6028/jres.066A.003Search in Google Scholar

6Mirabella, F. M.: J. Polym. Sci., Polym. Phys. 39, p. 2800 (2001)10.1002/polb.10040Search in Google Scholar

7Kim, M. H., Phillips, P. J.: J. Appl. Polym. Sci. 70, p. 1893 (1998)10.1002/(SICI)1097-4628(19981205)70:10<1893::AID-APP4>3.0.CO;2-6Search in Google Scholar

8Feng, L., Kamal, M. R.: Can. J. for Chem. Eng. 82, p. 1239 (2004)10.1002/cjce.5450820611Search in Google Scholar

9Flory, P. J.: Trans Faraday Soc. 51, p. 847 (1955)10.1039/tf9555100848Search in Google Scholar

10Wlochowicz, A., Eder, M.: Polymer25, p. 1286 (1984)10.1016/0032-3861(84)90374-4Search in Google Scholar

11Plummer, C. J. G., Kausch, H. H.: Polym. Bull. 36, p. 355 (1996)10.1007/BF00319237Search in Google Scholar

12Androsch, R., Blackwell, J., Chvalun, S. N., Wunderlich, B.: Macromolecules32, p. 3735 (1999)10.1021/ma9818331Search in Google Scholar

13McFaddin, D. C., Russell, K. E., Wu, G., Heyding, R. D.: J. Polym. Sci., Polym. Phys. 31, p. 175 (1993)10.1002/polb.1993.090310206Search in Google Scholar

14Androsch, R., Wunderlich, B.: Macromolecules33, p. 9076 (2000)10.1021/ma000504hSearch in Google Scholar

15Bensason, S., Minick, J., Moet, A., Chum, S., Hiltner, A., Baer, E.: J. Polym. Sci., Polym. Phys. 34, p. 1301 (1996)10.1002/(SICI)1099-0488(199605)34:7<1301::AID-POLB12>3.0.CO;2-ESearch in Google Scholar

16Lu, L., Alamo, R. G., Mandelkern, L.: Macromolecules27, p. 6571 (1994)10.1021/ma00100a048Search in Google Scholar

17Mathot, V. B. F., in: Calorimetry and Thermal Analysis of Polymers. Mathot, V. B. F. (Ed.), Hanser Publishers, New York (1994)Search in Google Scholar

18Hoffman, J. D., Miller, R. L.: Polymer38 (1997) 315110.1016/S0032-3861(97)00071-2Search in Google Scholar

19Feng, L., Kamal, M. R.: Polym. Eng. Sci. 85, p. 74 (2005)10.1002/pen.20231Search in Google Scholar

20Svergun, D. I., Feigin, L. A.: X-ray and Neutron Low-Angle Scattering. Plenum Press, New York (1987)Search in Google Scholar

21Crist, B.: J. Polym. Sci., Polym. Phys. 11, p. 635 (1973)10.1002/pol.1973.180110403Search in Google Scholar

22Defoor, F., Groeninckx, G., Reynaers, H., Schouterden, P., Van der Heijden, B.: Macromolecules26, p. 2575 (1993)10.1021/ma00062a028Search in Google Scholar

23Jokela, K., Vaananen, A., Torkkeli, M., Starck, P., Serimaa, R., Lofgren, B., Seppala, J.: J. Polym. Sci., Polym. Phys. 39, p. 1860 (2001)10.1002/polb.1161Search in Google Scholar

24Walter, E. R., Reding, F. P.: J. Polymer Sci. 21, p. 561 (1956)10.1002/pol.1956.120219925Search in Google Scholar

25Adamovsky, S., Schick, C.: Thermochim Acta. 415, p. 1 (2004)10.1016/j.tca.2003.07.015Search in Google Scholar

26Crist, B.: Polymer44, p. 4563 (2003)10.1016/S0032-3861(03)00331-8Search in Google Scholar

27Kamal, M. R., Feng, L.: Int. Polym. Process. 20, p. 78 (2005)Search in Google Scholar

Received: 2005-11-1
Accepted: 2006-3-7
Published Online: 2013-03-26
Published in Print: 2006-09-01

© 2006, Hanser Publishers, Munich

Downloaded on 30.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.0124/html
Scroll to top button