Home Asymmetric Surface Roughness Formationon Moving Non-isothermal Liquid Coatings
Article
Licensed
Unlicensed Requires Authentication

Asymmetric Surface Roughness Formationon Moving Non-isothermal Liquid Coatings

  • M. Yamamura , T. Uchinomiya , Y. Mawatari and H. Kage
Published/Copyright: March 26, 2013
Become an author with De Gruyter Brill

Abstract

We present a lubrication model of thermo-capillary flows in moving volatile liquid film coatings. The forced air impingement from a slit nozzle onto the moving coating imposes an axi-symmetric surface temperature distribution, and thus the local surface-tension gradients on the liquid surface. Despite the symmetric temperature profile, local thickness variations became asymmetric and exhibited a particular ridge in downstream and a depression in upstream. The competing feature between the surface-tension-driven and the pressure-driven flows gives a characteristic growth and decay in the surface roughness as the temperature profile travels in the opposite direction to the moving coating. The model prediction showed that the surface roughness was first enhanced and then suppressed with increasing the impinging air velocity, suggesting some directions for achieving more uniform coatings at higher speeds.


Mail address: M. Yamamura, Department of Applied Chemistry, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu, Fukuoka 804-8550, Japan. E-mail:

References

1Orchard, S. E.: Appl. Sci. Res. A11 p. 451 (1962)Search in Google Scholar

2Oron, A., Davis, S. H., Bankoff, S. G.: Reviews of Modern Physics69, p. 931 (1997)10.1103/RevModPhys.69.931Search in Google Scholar

3Kheshgi, H. S., Scriven, L. E.: Chemical Engineering Science47, p. 797 (1988)Search in Google Scholar

4Kheshgi, H. S.: AIChE Journal35, p. 1719 (1989)10.1002/aic.690351017Search in Google Scholar

5Eres, M. H., Weidner, D. E., Schwartz, L. W.: Langmuir15, p. 1859 (1999)10.1021/la980414uSearch in Google Scholar

6Weidner, D. E., Schwartz, L. W., Eley, R. R.: Journal of Colloid and Interface Science179, p. 66 (1996)10.1006/jcis.1996.0189Search in Google Scholar

7Schwartz, L. W., Roy, R. V., Eley, R. R., Petrash, S.: Journal of Colloid and Interface Science234, p. 363 (2001)10.1006/jcis.2000.7312Search in Google Scholar

8Evans, P. L., Schwartz, L. W., Roy, R. V.: Journal of Colloid and Interface Science227, p. 191 (2000)10.1006/jcis.2000.6877Search in Google Scholar

9Joos, F. M.: AIChE Journal42, p. 623 (1996)10.1002/aic.690420304Search in Google Scholar

10Iyer, R. R., Bousfield, D. W.: Chemical Engineering Science51, p. 4611 (1996)10.1016/0009-2509(96)00318-1Search in Google Scholar

11Blunk, R. H. J., Wilkes, J. O.: AIChE Journal47, p. 779 (2001)10.1002/aic.690470404Search in Google Scholar

12Armendariz, J., Matalon, M.: Physics of Fluids15, p. 1122 (2003)10.1063/1.1562939Search in Google Scholar

13Edmonstone, B. D., Matar, O. K.: Journal of Colloid and Interface Science274, p. 183 (2004)10.1016/j.jcis.2004.02.080Search in Google Scholar

14Gramlich, C. M., Kalliadasis, S., Homsy, G. M., Messer, C.: Physics of Fluids14, p. 1841 (2002)10.1063/1.1476672Search in Google Scholar

15Martin, H.: Advances in Heat Transfer13, p. 1 (1977)10.1016/S0065-2717(08)70221-1Search in Google Scholar

Received: 2006-5-7
Accepted: 2006-10-10
Published Online: 2013-03-26
Published in Print: 2007-03-01

© 2007, Carl Hanser Verlag, Munich

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.0062/pdf
Scroll to top button