Home Technology Investigation of the Precipitation Behavior of H-Carbides in a TiAl Alloy containing Carbon by means of in- and ex-situ Characterization
Article
Licensed
Unlicensed Requires Authentication

Investigation of the Precipitation Behavior of H-Carbides in a TiAl Alloy containing Carbon by means of in- and ex-situ Characterization

  • M. Burtscher , K. Kirchheimer , I. Weißensteiner , C. Bernhard , B. Lederhaas , T. Klein , S. Mayer and H. Clemens
Published/Copyright: September 25, 2018
Become an author with De Gruyter Brill

Abstract

In an intermetallic γ-TiAl alloy possessing the nominal composition of Ti-43Al-4Nb-1.5Mo-0.5C-0.1B (in at. %), the precipitation behavior of the hexagonal Ti2AlC phase was studied using complementary metallographic methods. By the addition of C, the alloy can be solid solution strengthened and precipitation hardened.

However, during an annealing process, coarse H carbides are formed in the β single-phase field which is practically insoluble for carbon. These coarse carbides are under the scope of this investigation. After determining the area of existence of the phase fields by means of differential scanning calorimetry, the occurrence and the morphology of the H-carbides were analyzed by applying specific heat treatments in the area of the α + β → β phase transformation. By the use of a laser scanning confocal microscope, the formation of the carbides was tracked in-situ as well as their growth kinetics determined. The mutual orientations of the microstructural constituents were determined in an scanning electron microscope by means of electron backscatter diffraction. Therefore, the specimen was not subjected to an additional surface treatment. Thus, the orientation relationship between the α2-Ti3Al phase and the H carbides could be verified and their formation within a C containing intermetallic TiAl-alloy could be illuminated.

Kurzfassung

Das Ausscheidungsverhalten der hexagonalen Ti2AlC Phase wurde in einer intermetallischen γ-TiAl Legierung der Zusammensetzung Ti-43Al-4Nb-1.5Mo-0.5C-0.1B (in at.%) unter Anwendung komplementärer metallographischer Methoden untersucht. Durch Zugabe von Kohlenstoff kann innerhalb dieses Legierungssystems eine Mischkristallverfestigung sowie Ausscheidungshärtung erreicht werden.

Bei einer Glühung in dem für den Kohlenstoff beinahe unlöslichen β-Einphasenfeld kommt es jedoch zur Bildung von groben H-Karbiden, welche Gegenstand dieser Untersuchung sind. Nach Bestimmung der Existenzbereiche der Phasenfelder mittels Differenzkalorimetriemessungen wurden das Auftreten und die Morphologie der H-Karbide durch gezielte Wärmebehandlungen im Bereich der α + β → β Phasenumwandlung untersucht. Durch Einsatz eines Laser-Scanning-Konfokal-Mikroskops konnte die Bildung dieser Karbide in-situ erfasst und die Kinetik des Wachstums bestimmt werden. Die Orientierungen der Gefügebestandteile zueinander wurden an der abgeschreckten Probe ohne zusätzliche Oberflächenbehandlung im Rasterelektronenmikroskop mittels Elektronenrückstreubeugung bestimmt. Dadurch konnte die Orientierungsbeziehung zwischen der α2-Ti3Al-Phase und den H-Karbiden verifiziert und das Verständnis über die Bildung von H-Karbiden in intermetallischen TiAl-Legierungen mit Kohlenstoff verbessert werden.


Translation: E. Engert


References / Literatur

[1] Masiol, M.; Harrison, R. M.: Atmos. Environ.95 (2014), 409455. 10.1016/j.atmosenv.2014.05.070Search in Google Scholar PubMed PubMed Central

[2] Mayer, S.; Erdely, P.; Fischer, F. D.; Holec, D.; Kastenhuber, M.; Klein, T.; Clemens, H.: Adv. Eng. Mater.19 (2017) 4, 127. 10.1002/adem.201600735Search in Google Scholar

[3] Schwaighofer, E.; Rashkova, B.; Clemens, H.; Stark, A.; Mayer, S.: Intermetallics46 (2014), 173184. 10.1016/j.intermet.2013.11.011Search in Google Scholar

[4] Clemens, H.; Mayer, S.: Pract. Metallogr.52 (2015) 12, 691720. 10.3139/147.110366Search in Google Scholar

[5] Hecht, U.; Witusiewicz, V.; Drevermann, A.; Zollinger, J.: Intermetallics16 (2008) 8, 969978. 10.1016/j.intermet.2008.04.019Search in Google Scholar

[6] Klein, T.; Niknafs, S.; Dippenaar, R.; Clemens, H.; Mayer, S.: Pract. Metallogr.52 (2015) 5, 259269. 10.3139/147.110341Search in Google Scholar

[7] Schloffer, M.; Schmoelzer, T.; Mayer, S.; Schwaighofer, E.; Hawranek, G.; Schimansky, F.-P.; Pyczak, F.; Clemens, H.: Pract. Metallogr.48 (2011) 11, 595604. 10.3139/147.110138Search in Google Scholar

[8] Yin, H.; Shibata, H.; Emi, T.; Suzuki, M.: ISIJ International37 (1997) 10, 936945.10.2355/isijinternational.37.936Search in Google Scholar

[9] Bernhard, C.; Schider, S.; Sormann, A.; Xia, G.; Ilie, S.: BHM156 (2011) 5, 161167.Search in Google Scholar

[10] Schmoelzer, T.; Liss, K.-D.; Zickler, G. A.; Watson, I. J.; Droessler, L. M.; Wallgram, W.; Buslaps, T.; Studer, A.; Clemens, H.: Intermetallics18 (2010) 8, 15441552. 10.1016/j.intermet.2010.04.008Search in Google Scholar

[11] Blackburn, M. J.: The Science (1970), 633643.10.1016/B978-0-08-006564-9.50071-3Search in Google Scholar

[12] Tian, W. H.; Nemoto, M.: Intermetallics5 (1997) 3, 237244.10.1016/S0966-9795(96)00086-6Search in Google Scholar

[13] Burgers, W. G.: Physica I7 (1934), 561586. 10.1016/S0031-8914(34)80244-3Search in Google Scholar

Received: 2018-02-01
Accepted: 2018-05-16
Published Online: 2018-09-25
Published in Print: 2018-10-15

© 2018, Carl Hanser Verlag, München

Downloaded on 16.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/147.110516/html
Scroll to top button