Home Technology SEM and TEM Methods for the Quantification of Gamma-Prime Precipitates in Nickel Alloys
Article
Licensed
Unlicensed Requires Authentication

SEM and TEM Methods for the Quantification of Gamma-Prime Precipitates in Nickel Alloys

  • M. Speicher , R. Scheck , D. Willer and K. Maile
Published/Copyright: April 28, 2017
Become an author with De Gruyter Brill

Abstract

This work presents the quantitative evaluation of the gamma-prime phase for two nickel-based alloys which contain different proportions of this phase. Alloy 617 mod. was chosen here as an example for nickel alloys with a small volume fraction of the gamma-prime phase, while Alloy 263 was chosen as a material with a higher proportion. The examinations are performed in the scanning electron microscope (SEM) with high resolution as well as with a transmission electron microscope (TEM). The methods of quantitative recording are discussed. The results of the SEM and TEM analyses are compared and discussed. Several etching techniques were applied for the sample preparation.

Kurzfassung

In dieser Arbeit werden quantitative Auswertungen der Gamma-Strich-Phase für zwei Nickelbasislegierungen durchgeführt. Die beiden Werkstoffe weisen dabei unterschiedliche Anteile dieser Phase auf. Als Repräsentant der Nickellegierungen mit geringem Volumenanteil der Gamma-Strich-Phase wurde Alloy 617 mod. gewählt und als Werkstoff mit höherem Anteil Alloy 263. Die Untersuchungen werden sowohl im Rasterelektronenmikroskop (REM) mit hoher Auflösung als auch mithilfe des Transmissionselektronenmikroskops (TEM) durchgeführt. Die Methoden der quantitativen Erfassung werden erörtert. Eine Gegenüberstellung der Ergebnisse von REM- und TEM-Auswertungen wird durchgeführt und diskutiert. Dabei wurden für die Probenpräparation mehrere Ätzverfahren angewandt.


Translation: E. Engert


References / Literatur

[1] Decker, R. F., Steel Strengthening Mechanisms Symposium, Climax Molybdenum Company (1969), 124Search in Google Scholar

[2] Wlodek, S. T.; Kelly, M; Alden, D: Superalloys1996 (1996), 467476Search in Google Scholar

[3] Zickler, G. A.: Diplomarbeit, Montanuniversität Leoben, IfM, 2002, 6Search in Google Scholar

[4] Donachie, M. J.; Donachie, S. J.: Superalloys, A Technical Guide, ASM International2002, 2710.31399/asm.tb.stg2.9781627082679Search in Google Scholar

[5] Wu, Q.: Dissertation, University of Cincinnati, 2006, 100Search in Google Scholar

[6] Speicher, M. et al.: Energy Technology4 (2016), 18719210.1002/ente.201500311Search in Google Scholar

[7] Brammer, J. S.; Dewey, M. A. P.: Specimen Preparation for Electron Metallography. Blackwell Scientific Publications, Oxford, 1966Search in Google Scholar

[8] Zhao, J. C. et al.: Metallurgical and Materials Transactions A32 (2001), 1271128210.1007/s11661-001-0217-4Search in Google Scholar

[9] Xie, Y.; Wang, M.: Surface and Coatings Technology201 (2006), 69169810.1016/j.surfcoat.2005.12.034Search in Google Scholar

[10] Qin, X. Z. et al.: Metallurgical and Materials Transactions A, Vol. 38, 2007, 3014302210.1007/s11661-007-9381-5Search in Google Scholar

[11] Speicher, M.; Klenk, A.; Maile, K.; Roos, E.: Advanced Materials Research278 (2011), 24124610.4028/www.scientific.net/AMR.278.241Search in Google Scholar

[12] Suzuki, S.: JOM65 (2013), 1254126310.1007/s11837-013-0700-6Search in Google Scholar

Received: 2016-12-12
Accepted: 2017-03-07
Published Online: 2017-04-28
Published in Print: 2017-05-17

© 2017, Carl Hanser Verlag, München

Downloaded on 9.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/147.110449/html
Scroll to top button