Home Technology Best of Schadensanalyse an Turbomaschinen – die Highlights aus 20 Jahren Laborpraxis
Article
Licensed
Unlicensed Requires Authentication

Best of Schadensanalyse an Turbomaschinen – die Highlights aus 20 Jahren Laborpraxis

  • A. Neidel

    was born in 1961 and studied mechanical engineering at IH Berlin. He got his doctorate there in 1991 with a thesis on high speed heat treatment of low alloy steel. In 1992 he joined Siemens' Energy Sector. Having worked ever since in quality management functions, he has been manager of the metallography laboratory and later the entire materials testing laboratory. Since May 2007 he heads the laboratories on the premises of the Berlin Gas Turbine Plant. From October 2015 on he has worked as a Senior Key Expert on Failure Analysis of Siemens Power and Gas Division. In 2012 he was appointed member of the expert workgroup on failure analysis of the society of materials engineering of the German society of engineers (Expertenkreis Schadensanalyse der Gesellschaft Materials Engineering des Vereins Deutscher Ingenieure). In July 2015 Dr. Neidel was appointed Honorary Professor for Metallic Materials of the Berlin Institute of Technology (Technische Universität Berlin).

    , E. Cagliyan , T. Gädicke , M. Giller , V. Hartanto , C. Kramm , S. Riesenbeck , T. Ullrich , S. Wallich and E. Wöhl
Published/Copyright: February 23, 2022
Become an author with De Gruyter Brill

Abstract

In this contribution, the most interesting and educational failure cases are presented that the author came across during his over twenty years of laboratory practice as manager of the Materials Testing Laboratory of the Berlin Gas Turbine Plant of Siemens’ Power and Gas Division. The case studies are presented and categorised in accordance with VDI Guideline 3822, the German failure analyst’s guide to the subject of how to organise and run a root cause failure analysis. An effort was made to have each of the main four categories of failure causes represented, namely failures due to mechanical loading, corrosive failures, failures due to thermal loading, and tribological failures. Case studies include turbomachinery components that failed due to tensile overload, stress corrosion cracking, intergranular corrosion, hydrogen embrittlement, hot cracking, fretting, erosion, and galling. Affected components include valves, retaining rings, tubing and piping, burners, rotor disks, lifting lugs, and casings. Some of the presented cases were published in the new section “Failure Analysis” of Practical Metallography between October 2011 and the present time. Others were oral presentations at the Metallography conferences and at the annual failure analysis conferences “VDI Jahrestagung Schadensanalyse”, held during that time. The focus of discussion of the failure cases in this paper is the metallurgical evaluation of failure causes. This is the approach taken in many small and industrial laboratories. A holistic approach of a failure case, which includes calculation and simulation methods such as finite element analysis, and which also implies a knowledge of the service stresses intended by design as well as the actual loading situation of the failed part, is not the aim of this contribution.

Kurzfassung

In diesem Beitrag werden die interessantesten und lehrreichsten Schadensfälle vorgestellt, die dem Autor in über 20 Jahren Laborpraxis am Gasturbinenwerk in Berlin als Leiter des Materialtestlabors der Abteilung Power and Gas von Siemens begegnet sind. Die Fallstudien werden gemäß der VDI-Richtlinie 3822, dem deutschen Leitfaden für Schadensfallanalysten zur Organisation und Durchführung Schadensursachenanalysen, vorgestellt und kategorisiert. Es wurde versucht, jede der vier wichtigsten Kategorien von Schadensursachen vorzustellen, nämlich Schäden aufgrund von mechanischer Belastung, Korrosionsschäden, Schäden aufgrund von thermischer Belastung und tribologische Schäden. Die Fallstudien beinhalten Schäden an Komponenten von Turbomaschinen durch Überlast, Spannungskorrosionsrisse, interkristalline Korrosion, Wasserstoffversprödung, Heißrisse, Reibung, Erosion und Adhäsionsverschleiß. Betroffene Komponenten umfassen Ventile, Halteringe, Rohre, Brenner, Rotorscheiben, Hubösen und Gehäuse. Einige der vorgestellten Fälle wurden zwischen Oktober 2011 und heute in der neuen Rubrik „Schadensfälle“ von Praktische Metallographie veröffentlicht. Bei anderen handelte es sich um mündliche Vorträge bei den Metallographie-Konferenzen und bei den jährlichen Schadensfall-Konferenzen „VDI Jahrestagung Schadensanalyse“, die in dieser Zeit stattfanden. Bei den Schadensfällen in diesem Beitrag steht die werkstofftechnische Bewertung von Schadensursachen im Mittelpunkt der Diskussion. Es handelt sich dabei um den Ansatz, der in vielen kleinen und industriellen Laboren zum Einsatz kommt. Ein holistischer Ansatz eines Schadensfalls, der Berechnungs- und Simulationsmethoden wie Finite-Element-Analyse umfasst und auch eine Kenntnis der betriebsbedingten Spannungen, die vom Design vorgesehen waren, und der tatsächlichen Belastungssituation des ausgefallenen Teils voraussetzt, ist nicht Ziel dieses Beitrags.

About the author

A. Neidel

was born in 1961 and studied mechanical engineering at IH Berlin. He got his doctorate there in 1991 with a thesis on high speed heat treatment of low alloy steel. In 1992 he joined Siemens' Energy Sector. Having worked ever since in quality management functions, he has been manager of the metallography laboratory and later the entire materials testing laboratory. Since May 2007 he heads the laboratories on the premises of the Berlin Gas Turbine Plant. From October 2015 on he has worked as a Senior Key Expert on Failure Analysis of Siemens Power and Gas Division. In 2012 he was appointed member of the expert workgroup on failure analysis of the society of materials engineering of the German society of engineers (Expertenkreis Schadensanalyse der Gesellschaft Materials Engineering des Vereins Deutscher Ingenieure). In July 2015 Dr. Neidel was appointed Honorary Professor for Metallic Materials of the Berlin Institute of Technology (Technische Universität Berlin).

References / Literatur

[1] ASM Handbook, Vol. 11: Failure Analysis and Prevention. American Society for Metals.Search in Google Scholar

[2] ASM Handbook, Vol. 12: Fractography. American Society for Metals. HandbookSearch in Google Scholar

[3] McEvily, A. J.: Metal Failures. John Wiley & Sons, Inc.; New York 2002Search in Google Scholar

[4] Electron Fractography. ASTM STP 436. ASTM, 1968Search in Google Scholar

[5] Donachie, M. J.; Donachie, S. J.: Superalloys: A Technical Guide. ASM International,Search in Google Scholar

[6] Maier, F.; Opielka, H.: Interkristalline Korrosion von Sicherungsringen aus 1.4122 (X39Cr-Mo17–1). Prakt. Met. Sonderband 36 (2004), 365–366Search in Google Scholar

[7] Kruth, J. P.; Badrossamay, M.; Yasa, E.; Deckers, J.; Thijs, L.; Van Humbeeck, J.: Part and material properties in selective laser melting of metals. 16th International Symposium on Electromachining (ISEM VI)Search in Google Scholar

[8] Levy, G. N.; Schindel, R.; Kruth, J. P.: Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CRIP Annals, 52/2 2003, 583–609 DOI: 10.1016/s0007–8506(07)60206–610.1016/s0007–8506(07)60206–6Search in Google Scholar

[9] Hopkinson, N.; Dickens, P.: Rapid prototyping for direct manufacture. Rapid Prototyping Journal, 7/4 2001, 197–202 DOI: 10.1108/EUM000000000575310.1108/EUM0000000005753Search in Google Scholar

[10] Kruth, J. P.; Levy, G.; Klocke, F.; Childs, T. H. C.: Consolidation phenomena in laser and powderbed based layered manufacturing. CRIP Annals, 56/2 2007, 730–759 DOI: 10.1016/j.cirp.2007.10.00410.1016/j.cirp.2007.10.004Search in Google Scholar

[11] D2P Direct to Product: Herstellung von Funktionsprototypen und Werkzeugen mit serienidentischen Eigenschaften durch Selective Laser Melting. Ergebnisbericht zum Verbundvorhaben der Firmen und Institute Braun, Fraunhofer ILT, Trumpf, Heidelberg, Dresden 2012Search in Google Scholar

[12] van Elsen, M.; Al-Bender, F.; Kruth, J. P.: Application of dimensional analysis to selective laser melting. Rapid Prototyping Journal 14/1 2008, 15–22 DOI: 10.1108/1355254081084152610.1108/13552540810841526Search in Google Scholar

[13] Brodin, H.; Andersson, O.; Johansson, S.: Mechanical Behaviour and Microstructure Correlation in a Selective Laser Melted Superalloy. Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, June 3–7, 2013, San Antonio, Texas, USA DOI: 10.1115/gt2013-9587810.1115/gt2013-95878Search in Google Scholar

[14] Hennig, L.: Entwicklung des Strahlschmelzgefüges durch geeignete Wärmebehandlungen. Zwischenbericht Dissertation, Berlin 27.03.2013Search in Google Scholar

[15] Ramos, J. A.; Murphy, J.; Lappo, K.; Wood, K.; Bourell, D. L.; Beaman, J. J.: Single-layer Deposits of Nickel Base Superalloy by means of Selective Laser Melting. Laboratory for Freeform Fabrication, The University of Texas at Austin, TX 78712, USA, 211–223Search in Google Scholar

[16] Küsters, Y.: HT of SLM processed material. Siemens AG, internal meeting, November 29, 2012Search in Google Scholar

[17] Fischer, B.; Cagliyan, E.; Ullrich, T.: Metallurgical Failure Investigation of Cracked Laser Sintered Y-pipe Used in HR3 Burner Rig Test Service. Siemens AG, Internal Report GT BLN QM/2013/0327, June 22, 2013Search in Google Scholar

[18] Zaeh, M. F.; Branner, G.: Investigations on residual stresses and deformations in Selective Laser Melting (SLM). Institute for Machine Tools and Industrial Management (iwb), Garching, Germany 2012Search in Google Scholar

[19] Bassoli, E. et al.: Investigation into the failure of Inconel exhaust collector produced by laser consolidation. Eng. Fail. Anal. (2013) DOI: 10.1016/j.engfailanal.2013.03.02510.1016/j.engfailanal.2013.03.025Search in Google Scholar

[20] www.s-k-h.co/media/de/Service/Werkstoffblaetter_englisch/KesselrohreSearch in Google Scholar

[21] Materialdatenblatt MS / 03-08, EOS GmbH, Electro Optical Systems 2008Search in Google Scholar

[22] http://www.matweb.com/search/datasheet.aspx?matguidSearch in Google Scholar

Received: 2016-11-12
Accepted: 2016-11-16
Published Online: 2022-02-23

© 2017 Carl Hanser Verlag GmbH & Co. KG

Downloaded on 9.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/147.110442/html
Scroll to top button