Home Why Do Fasteners Fail? An Insight in to the Modes and Mechanisms of Fastener Failures
Article
Licensed
Unlicensed Requires Authentication

Why Do Fasteners Fail? An Insight in to the Modes and Mechanisms of Fastener Failures

  • Sushant K. Manwatkar

    is a scientist with Advanced Metallography Section (AMS) at Vikram Sarabhai Space Center, Trivandrum, India. His areas of interest include microstructural characterisation of aerospace materials and failure analysis investigations of aerospace structures and components.

    , S. V. S. Narayana Murty

    is Deputy Head, Material Characterisation Division at Vikram Sarabhai Space Center, Trivandrum, India. His areas of interest include microstructure-mechanical property correlation in aerospace alloys and metallurgical failure analysis of space components and structures.

    , P. Ramesh Narayanan , S. C. Sharma and P. V. Venkitakrishnan
Published/Copyright: February 23, 2022
Become an author with De Gruyter Brill

Abstract

In spite of the experiences in the design, material selection, fabrication and storage, fastener failures are reported frequently. While each failure leaves the user with some wisdom, analysing a failure is time consuming and affects the project schedules. In the aerospace scenario, it is all the more important to analyse the causes of fastener failures as a single failure can sometimes be catastrophic and mission critical. In the present paper, an attempt has been made to address why fasteners fail with a view to provide an insight into the modes and mechanisms. Finally, an attempt is made to bring out various modes and mechanisms of fastener failures. Four typical case studies on fastener failures are presented to highlight them.

Kurzfassung

Trotz der Erfahrungswerte für Design, Materialauswahl, Herstellung und Lagerung wird häufig von Versagensfällen bei Befestigungselementen berichtet. Jeder Versagensfall bringt dem Benutzer zwar neue Erkenntnisse, die Fehleranalyse allerdings ist zeitaufwändig und wirkt sich negativ auf Projektzeitpläne aus. In einem Szenario im Bereich der Luft- und Raumfahrttechnik ist eine Untersuchung der Versagensfälle bei Befestigungselementen umso wichtiger, da ein einzelner solcher Fall mitunter katastrophale Folgen haben und einsatzkritisch sein kann. In der vorliegenden Arbeit sollen Einblicke in Versagensarten- und -mechanismen gewährt werden und es wird versucht aufzuzeigen, warum Befestigungselemente versagen. Schließlich sollen verschiedene Versagensarten und -mechanismen hervorgehoben werden. Um diese zu beleuchten, werden vier typische Fallstudien zu Versagensfällen bei Befestigungselementen vorgestellt.

About the authors

Sushant K. Manwatkar

is a scientist with Advanced Metallography Section (AMS) at Vikram Sarabhai Space Center, Trivandrum, India. His areas of interest include microstructural characterisation of aerospace materials and failure analysis investigations of aerospace structures and components.

S. V. S. Narayana Murty

is Deputy Head, Material Characterisation Division at Vikram Sarabhai Space Center, Trivandrum, India. His areas of interest include microstructure-mechanical property correlation in aerospace alloys and metallurgical failure analysis of space components and structures.

4

4 Acknowledgements

Authors wish to thank the Director, VSSC for his kind permission to publish this work.

4

4 Danksagung

Die Autoren möchten dem Direktor des VSSC für die freundliche Genehmigung zur Veröffentlichung dieser Arbeit danken.­

References / Literatur

[1] Metals hand book, Vol.19 Fatigue and fracture p.2123 (2008) ASM, Materials Park, OH, USA.Search in Google Scholar

[2] Jha, A.K.; Reddy, K.G.; John, K.M.; Ramesh Narayanan, P.; Natrajan, A.; Lakshamanan, T.S.: Pract. Metallogr. 31(1994) 144–50.10.1515/pm-1994-310307Search in Google Scholar

[3] Reddy, K.G.; Jha, A.K. and Diwakar, V.: Engineering Failure Analysis 8 (2001) 263–269. DOI: 10.1016/S1350-6307(00)00011-X10.1016/S1350-6307(00)00011-XSearch in Google Scholar

[4] Brown, R.F.: DMIC report 210 October 26–28 (1964), 91Search in Google Scholar

[5] Parkins, R.N. and Haney, E.G.: Trans. Mat. Sci. AIME, 242 (1968) 162.Search in Google Scholar

[6] Syrett, B.C.: Corrosion NACE 27, No. 7 (1971) 151. DOI: 10.5006/0010-9312-27.7.27010.5006/0010-9312-27.7.270Search in Google Scholar

[7] Hayden, H.W. and Floreen, S.: Corrosion NACE 27 No.10 (1971) 429. DOI: 10.5006/0010-9312-27.10.42910.5006/0010-9312-27.10.429Search in Google Scholar

[8] Stavros, A.J. and Paxton, H.W.: Met. Trans 1, (1970) 173.Search in Google Scholar

[9] Villalba, E. and Atrens, A.: Enginnering Failure Analysis 16 (2009), 164–175. DOI: 10.1016/j.engfailanal.2008.01.00410.1016/j.engfailanal.2008.01.004Search in Google Scholar

[10] Jha, Abhay K.; Manwatkar, Sushant K.; Sreekumar, K.: Engineering Failure Analysis 17 (2010), 777–786. DOI: 10.1016/j.engfailanal.2009.10.00710.1016/j.engfailanal.2009.10.007Search in Google Scholar

Received: 2016-07-27
Accepted: 2016-11-11
Published Online: 2022-02-23

© 2017 Carl Hanser Verlag GmbH & Co. KG

Downloaded on 24.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/147.110433/html
Scroll to top button