A Procedure for in situ Identification of the Intermetallic AlTMSi Phase Precipitates in the Microstructure of the Aluminum Alloys
-
M. Warmuzek
and K. Regulski
Abstract
In this work, the results of the examinations of morphology and chemical composition of the primary AlTMSi intermetallic phases precipitates observed in the Al–Si cast alloys microstructure have been presented. A procedure for the treatment of EDS X-ray microanalysis results (selection and classification) using fuzzy logic concept has been developed and then tested in application for AlTMSi phase identification. Statistically significant differences in the chemical composition have been revealed between the analyzed groups of precipitates of both α- and β-AlTMSi phases formed in hypo- and eutectic Al-Si alloys with the same content of transition metals. The range of the measured Mn solubility in the precipitates of different crystal lattices has been statistically estimated.
Kurzfassung
In dieser Arbeit werden Ergebnisse vorgestellt, die durch die Untersuchung von Morphologie und chemischer Zusammensetzung primärer intermetallischer AlTMSi-Phasenausscheidungen im Gefüge von Al–Si-Gusslegierungen gewonnen wurden. Basierend auf der Fuzzy-Logik wurde ein Verfahren zur Auswertung der Ergebnisse der EDX-Mikroanalyse (Auswahl und Klassifizierung) entwickelt und für die Bestimmung der AlTMSi-Phase in der Praxis getestet. Statistisch zeigten sich bedeutende Unterschiede in der chemischen Zusammensetzung der untersuchten α- und β-AlTMSi-Phasenausscheidungen in untereutektischen und eutektischen Al-Si-Legierungen mit gleichem Gehalt an Übergangsmetallen. Der Bereich der gemessenen Mn-Löslichkeit in den Ausscheidungen verschiedener Kristallgitter wurde statistisch bestimmt.
References / Literatur
[1] WangL; ApelianD.; MakhloufM.: AFS Trans., 146(1999), 231–238Search in Google Scholar
[2] BirbilisN.; BuchheitR.G.: J. Elecrochemi. Society, 152 (2005), 4, B140–B15110.1149/1.1869984Search in Google Scholar
[3] AmbatR.; DavenportA.J.: J. Electrochem. Soc, 151 (2004), 2, B53–B58,10.1149/1.1635828Search in Google Scholar
[4] MondolfoL.: Aluminum alloys: structure and properties, Butterworth, Boston-London, 197610.1016/B978-0-408-70932-3.50008-5Search in Google Scholar
[5] TaylorJ.A.: Metall. Mat. Trans. A, 27A (1996), 415–42910.1007/BF02648419Search in Google Scholar
[6] PrattJ.N.; RaynorG.V.: Proc. of the Royal Society of London, A, 205 (1951), A1080, 103–11810.1098/rspa.1951.0020Search in Google Scholar
[7] PrattJ.N.; RaynorG.V.: Journal of the Institute of Metals, 79 (1951), 211–23210.2464/jilm.1951.79Search in Google Scholar
[8] Von KeitzA. etal.: Z. Metalik.89 (1998), 12, 803–80910.1097/00000542-199809000-00057Search in Google Scholar
[9] CooperM.: Acta Cryst., 23 (1967), 1106–11710.1107/S0365110X67004372Search in Google Scholar
[10] TibballsJ.E.; DavisR.L.; ParkerB.A.: Journal of Material Science, 24 (1989), 2177–218210.1007/BF02385438Search in Google Scholar
[11] IglessisJ.; FrantzC; GantoisM.: Mem Scie. Rev. Met.74 (1977), 4, 237–242Search in Google Scholar
[12] GhomashchiR.M.: Z. Metalik., 78 (1987), 11784–78710.1515/ijmr-1987-781105Search in Google Scholar
[13] MuraliS.; RamanK.S.; MurthyS.S.: Mat. Char., 33 (1994), 99–11210.1016/1044-5803(94)90072-8Search in Google Scholar
[14] PucellaG.; SamuelA.M.; DotyH.W., ValtierraS.: AFS Trans. (1998), 117–125Search in Google Scholar
[15] NarayananA.L.; SamuelF.H.; GruzleskiJ.E.: Metall. Mat. Trans. A, 25A (1994), 8, 1761–177310.1007/BF02668540Search in Google Scholar
[16] ShabestariS.G.; GruzleskiJ.E.: Cast Metals, 6 (1994), 4, 217–22410.1080/09534962.1994.11819153Search in Google Scholar
[17] WarmuzekM.; RatuszekW.; Sêk-SasG.: Mat. Char., 54 (2004), 1, 31–4010.1016/j.matchar.2004.10.001Search in Google Scholar
[18] BarlockJ.G.; MondolfoL: Z. Metalik., 66 (1975), 10, 605–61110.1515/ijmr-1975-661008Search in Google Scholar
[19] TamminenJ.: Thermal analysis for investigation of solidification mechanism, in: Metals and Alloys, Chemical Communications, (1988), 2Search in Google Scholar
[20] ZakharovA.M.; et al.: Izv. VUZ., Cvetn. Met., (1989), 78–81Search in Google Scholar
[21] WatanabeH.; OhoriK.; TakeushiY.: Aluminum, 60 (1984), 5, 373–376Search in Google Scholar
[22] RivlinV.G.; RaynorG.V.: International Metals Reviews, (1981), 3, 133–15210.1179/095066081790149186Search in Google Scholar
[23] RommingC: Acta Cryst.B50 (1994), 307–31210.1107/S0108768193013096Search in Google Scholar
[24] GoldsteinJ.I.; et al.: Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press. New York, 199210.1007/978-1-4613-0491-3Search in Google Scholar
[25] WarmuzekM.; GazdaA.: J. Analytical Atomic Spectrometry, 14 (1999), 535–53710.1039/a808100jSearch in Google Scholar
[26] WarmuzekM.; MrówkaG.; SieniawskiJ.: J. Mat. Proc. Techn., 157–158C (2004) 624–63210.1016/j.jmatprotec.2004.07.125Search in Google Scholar
[27] MaQian et al.: Journal of Light Metals, 1 (2001) 187–19310.1016/S1471-5317(01)00012-8Search in Google Scholar
[28] KuijpersN.C.; KoolW.H.; etal.: Mat. Char., 49 (2003), 409–42010.1016/S1044-5803(03)00036-6Search in Google Scholar
[29] KaehlerS.D: Fuzzy Logic Tutorial: www.seat-tlerobotics.org/encoder/Mar98/fuz/fl_part1Search in Google Scholar
[30] StefaniayV.; GrigerA.; TurmezeyT: Journal of Materials Science, 22 (1987), 539–54610.1007/BF01160766Search in Google Scholar
[31] MunsonD.: Journal of the Institute of Metals., 95 (1967), 217–219Search in Google Scholar
[32] TibballsJ.E.; HorstL.A.; SimensenC.J.: Journal of Materials Science, 36 (2002), 937–94110.1023/A:1004815621313Search in Google Scholar
[33] DonnadieuP.; LapassetG.; SandersTH.: Philosophical Magazine Letters, 70 (1994), 5, 319–32610.1080/09500839408240993Search in Google Scholar
[34] DavignonG. etal.: Metall, and Mat. Trans., 27A (1996), 3357–336110.1007/BF02595428Search in Google Scholar
© 2011, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Dynamic Recovery and Recrystallization during Hot-Working in an Advanced TiAl Alloy
- Automated SEM/EDX Particle Analysis to Determinate Non-Metallic Inclusions in Steel Samples: Round Robin Tests Aiming at Studying the Comparability of Results from Different Measurement Systems
- A Procedure for in situ Identification of the Intermetallic AlTMSi Phase Precipitates in the Microstructure of the Aluminum Alloys
- Liquation Cracks in Hot Upset Low Alloy Steel Screw Heads
- Meeting Diary/Veranstaltungskalender
- Meeting Diary
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Dynamic Recovery and Recrystallization during Hot-Working in an Advanced TiAl Alloy
- Automated SEM/EDX Particle Analysis to Determinate Non-Metallic Inclusions in Steel Samples: Round Robin Tests Aiming at Studying the Comparability of Results from Different Measurement Systems
- A Procedure for in situ Identification of the Intermetallic AlTMSi Phase Precipitates in the Microstructure of the Aluminum Alloys
- Liquation Cracks in Hot Upset Low Alloy Steel Screw Heads
- Meeting Diary/Veranstaltungskalender
- Meeting Diary