Crystal structure, microstructure, and magnetic properties of the Fe2CrSi nanostructured Heusler alloy elaborated by the mechanical alloying method
Abstract
The Fe2CrSi nanostructured Heusler alloy was prepared by mechanical alloying followed by heat treatment. The structure, microstructure, and magnetic properties of the samples were studied by the following analysis methods: X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectrometry, transmission electron microscopy, and a vibrating sample magnetometer. The a-Fe (Si, Cr) solid solution with a disordered body centered cubic (bcc) crystal structure was obtained after 24 h of milling. An example of the sample milled for 32 h with a disordered crystal structure a-Fe(Si, Cr) was chosen to investigate the transformation with temperature using differential scanning calorimetry. The effect of annealing temperatures on the structural, microstructural, and magnetic properties of the ordered Fe2CrSi Heusler phase for the sample milled for 32 h was investigated.
© 2020 by Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- CONTENTS
- Original Contributions
- Effects of hydroxyapatite content on mechanical properties and in-vitro corrosion behavior of ZK60/HA composites
- The effect of plastic deformation on mechanical properties of aluminium matrix composites reinforced with 2D crystals
- Production and characterization of Al6061/zirconium carbide surface composites
- Microstructure and mechanical properties of rolled Mg–Gd–Zn–Zr–Ag–Al–Li alloys
- Anodizing and its effects on mechanical properties and corrosion resistance of laser additive manufactured Ti-6Al-4V alloy
- Comparative study of corrosion resistance between four non-commercial high manganese steel models and 9% nickel steel in aqueous solution of H2SO4
- Optimization of the grain boundary character distribution of pure copper by low-strain thermomechanical processing
- Two-step annealing treatment for grain refinement of cold-worked AISI 316L stainless steel
- Crystal structure, microstructure, and magnetic properties of the Fe2CrSi nanostructured Heusler alloy elaborated by the mechanical alloying method
- Experimental study of parameters influencing the damping of particulate, fibre-reinforced, hybrid, and sandwich composites
- Displacement cascade evolution in tungsten with pre-existing helium and hydrogen clusters: a molecular dynamics study
- Notifications
- DGM
- Conferences
- Imprint
Artikel in diesem Heft
- CONTENTS
- Original Contributions
- Effects of hydroxyapatite content on mechanical properties and in-vitro corrosion behavior of ZK60/HA composites
- The effect of plastic deformation on mechanical properties of aluminium matrix composites reinforced with 2D crystals
- Production and characterization of Al6061/zirconium carbide surface composites
- Microstructure and mechanical properties of rolled Mg–Gd–Zn–Zr–Ag–Al–Li alloys
- Anodizing and its effects on mechanical properties and corrosion resistance of laser additive manufactured Ti-6Al-4V alloy
- Comparative study of corrosion resistance between four non-commercial high manganese steel models and 9% nickel steel in aqueous solution of H2SO4
- Optimization of the grain boundary character distribution of pure copper by low-strain thermomechanical processing
- Two-step annealing treatment for grain refinement of cold-worked AISI 316L stainless steel
- Crystal structure, microstructure, and magnetic properties of the Fe2CrSi nanostructured Heusler alloy elaborated by the mechanical alloying method
- Experimental study of parameters influencing the damping of particulate, fibre-reinforced, hybrid, and sandwich composites
- Displacement cascade evolution in tungsten with pre-existing helium and hydrogen clusters: a molecular dynamics study
- Notifications
- DGM
- Conferences
- Imprint