Effect of nanostructured Al on microstructure, microhardness and sliding wear behavior of Al–xGnP composites by powder metallurgy (PM) route
-
Lailesh Kumar
, Syed N. Alam und Santosh K. Sahoo
Abstract
In the present work, Al-based metal matrix composites (MMCs) have been developed by the powder metallurgy (PM) route using exfoliated graphite nanoplatelets (xGnP) as nanofillers and their microstructure, microhardness and sliding wear behaviour were investigated. The Al-based MMCs were developed by using nanostructured Al powder developed by mechanical milling for 25 h in a high energy planetary ball mill. The crystallite size and lattice strain of Al after 25 h of milling were found to be 32 nm and 0.383 %, respectively. Al-1, 2, 3 wt.% xGnP composites were developed by the PM route. A significant improvement in both the microhardness and wear resistance of the Al–xGnP up to addition of 3 wt.% of the nanofiller was observed. For Al-3 wt.% xGnP composite developed using as-milled nanostructured Al, a microhardness of ∼ 1 GPa could be achieved, which is ∼6 times higher than that of the pure sintered Al sample (∼ 169.7 MPa). Nanostructured Al also leads to enhancement of the wear behaviour as compared to as-received Al. The wear mechanism in the various composites was found to involve a combination of abrasion, ploughing, delamination, microcracks, deep grooves and pullout of nanofillers.
References
[1] J.Eliasson, R.Sandstrom: Key Eng. Mater.104–107 (1995) 3–36. 10.4028/www.scientific.net/KEM.104-107.3Suche in Google Scholar
[2] R.Dasgupta: ISRN Metall.2012 (2012) 1–14. 10.5402/2012/594573Suche in Google Scholar
[3] A.R.Kennedy: J. Mater. Sci.7 (2002) 317–323. 10.1023/A:1013600328599Suche in Google Scholar
[4] S.Suresha, B.K.Sridhara: Mater. Des.31 (2010) 4470–4477. 10.1016/j.matdes.2010.04.053Suche in Google Scholar
[5] S.Lakshmi, L.Lu, M.Gupta: J. Mater. Process. Technol.73 (1998) 160–166. 10.1016/S0924-0136(97)00225-2Suche in Google Scholar
[6] A.Blomberg, M.Olsson, S.Hogmark: Wear171 (1994) 77–89. 10.1016/0043-1648(94)90350-6Suche in Google Scholar
[7] R.G.Bhandare, P.M.Sonawane: Int. J. Eng. Adv. Technol.3 (2013) 61–65. 10.1.1.678.7639Suche in Google Scholar
[8] S.Das, S.Das, K.Das: Compos. Sci. Technol.67 (2007) 746–751. 10.1016/j.compscitech.2006.05.001Suche in Google Scholar
[9] M.Bai, Q.Xue, W.Liu, S.Yang: Wear199 (1996) 222–227. 10.1016/0043-1648(96)06960-8Suche in Google Scholar
[10] S.O.Yilmaz: Tribol. Int.40 (2007) 441–452. 10.1016/j.triboint.2006.04.008Suche in Google Scholar
[11] L.Ceschini, A.Morri, F.Rotundo: Compr. Mater. Process. (2014). 159–186. 10.1016/B978-0-08-096532-1.00311-3Suche in Google Scholar
[12] S.Stankovich, D.A.Dikin, R.D.Piner, K.A.Kohlhaas, A.Kleinhammes, Y.Jia, Y.Wu, S.T.Nguyen, R.S.Ruoff: Carbon45 (2007) 1558–1565. 10.1016/j.carbon.2007.02.034Suche in Google Scholar
[13] B.J.Lee: Bull. Korean Chem. Soc.23 (2002) 1801–1805. 10.1.1.865.2349Suche in Google Scholar
[14] L.A.Yolshina, R.V.Muradymov, I.V.Korsun, G.A.Yakovlev, S.V.Smirnov: J. Alloys Compd.663 (2016) 449–459. 10.1016/j.jallcom.2015.12.084Suche in Google Scholar
[15] M.Rashad, F S.Pan, M.Asif and A.Ullah: Mater. Sci. Technol.31 (12) (2015) 1452–1461. 10.1179/1743284714Y.0000000726Suche in Google Scholar
[16] M.Rashad, F.S.Pan, Z.W.Yu, M.Asif, H.Lin, R.J.Pan: Prog. Nat. Sci.25 (2015) 460–470. 10.1016/j.pnsc.2015.09.005Suche in Google Scholar
[17] M. El-SayedSeleman, M.Z.Ahmed, S.Ataya: J. Mater. Sci. Technol.34 (2018) 1580–1591. 10.1016/j.jmst.2018.03.004Suche in Google Scholar
[18] M.Rashad, F.S.Pan, Y.L.Liu, X.H.Chen, H.Lin, R.J.Pan: J. Magnesium Alloys4 (2016) 270–277. 10.1016/j.jma.2016.11.003Suche in Google Scholar
[19] J.K.Chen, I.S.Huang: Composites PartB 44 (2013) 698–703. 10.1016/j.compositesb.2012.01.083Suche in Google Scholar
[20] J.S.S.Babu, C.G.Kang: Mater. Des.31 (2010) 4881–4885. 10.1016/j.matdes.2010.05.029Suche in Google Scholar
[21] ASaboori, S KMoheimani, MDadkhah, MPavese, CBadini, PFino: Metals, 2018, 8(3), 172. 10.3390/met8030172Suche in Google Scholar
[22] A.Saboori, C.Novara, M.Pavese, C.Badini, F.Giorgis, P.Fino: J. Mater. Eng. Perform., 26 (2017). 10.1007/s11665-017-2522-0Suche in Google Scholar
[23] E.J.Mittemeijer, U.Welzel: Z. Kristallogr.223 (2008) 552–560. 10.1524/zkri.2008.1213Suche in Google Scholar
[24] T.Raghu, R.Sundaresan, P.Ramakrishnan, T.R. RamaMohan: Mater. Sci. Eng.A 304–306 (2001) 438–441. 10.1016/S0921-5093(00)01444-1Suche in Google Scholar
[25] T.Venugopal, K.P.Rao, B.S.Murty: Mater. Sci. Eng.A 393 (2005) 382–386. 10.1016/j.msea.2004.10.035Suche in Google Scholar
[26] K.A.Padmanabhan: Mater. Sci. Eng.A 304–306 (2001) 200–205. 10.1016/S0921-5093(00)01437-4Suche in Google Scholar
[27] K.Ďurišinová, J.Ďurišin, M.Orolínová, M.Ďurišin, J.Szabó: J. Alloys Compd.618 (2015) 204–209. 10.1016/j.jallcom.2014.08.177Suche in Google Scholar
[28] T.H.de Keijser, J.I.Langford, E.J.Mittemeijer, A.B.P.Vogels: J. Appl. Crystallogr.15 (1982) 308–314. 10.1107/S0021889882012035Suche in Google Scholar
[29] J.L.Li, Y.C.Xiong, X.D.Wang, S.J.Yan, C.Yang, W.W.He, J.Z.Chen, S.Q.Wang, X.Y.Zhang, S.L.Dai: Mater. Sci. Eng.A 626 (2015) 400–405. 10.1016/j.msea.2014.12.102Suche in Google Scholar
[30] M.Rashad, F.Pan, A.Tang, M.Asif: Prog. Nat. Sci. Mater. Int.24 (2014) 101–108. 10.1016/j.pnsc.2014.03.012Suche in Google Scholar
[31] F.H.Latief, E.S.M.Sherif: J. Ind. Eng. Chem.18 (2012) 2129–2134. 10.1016/j.jiec.2012.06.007Suche in Google Scholar
[32] S.N.Alam, L.Kumar: Mater. Sci. Eng.A 667 (2016) 16–32. 10.1016/j.msea.2016.04.054Suche in Google Scholar
[33] C.F.Deng, D.Z.Wang, X.X.Zhang, A.B.Li: Mater. Sci. Eng.A 444 (2007) 138–145. 10.1016/j.msea.2006.08.057Suche in Google Scholar
[34] A.Saboori, M.Dadkhah, P.Fino, M.Pavese: Metals2018. 10.3390/met8060423Suche in Google Scholar
[35] A.Saboori, M.Pavese, C.Badini, P.Fino: Metall. Mater. Trans.A 49, (2018) 333–345. 10.1007/s11661-017-4409-ySuche in Google Scholar
[36] R.Pérez-Bustamante, D.Bolaños-Morales, J.Bonilla-Martínez, I.Estrada-Guel, R.Martínez-Sánchez: J. Alloys Compd.615 (2014) S578–S582. 10.1016/j.jallcom.2014.01.225Suche in Google Scholar
[37] R.L.Deuis, C.Subramanian, J.M.Yellup: Compos. Sci. Technol.57 (1997) 415–435. 10.1016/S0266-3538(96)00167-4Suche in Google Scholar
[38] N.A.M.P.Suh, P.N.Suh: Wear.25 (1973) 111–124. 10.1016/0043-1648(73)90125-7Suche in Google Scholar
[39] B.K.Show, D.K.Mondal, J.Maity: Metall. Mater. Trans.A 45 (2013) 1027–1040. 10.1007/s11661-013-2044-9Suche in Google Scholar
[40] S.Q.Wang, M.X.Wei, Y.T.Zhao: Wear269 (2010) 424–434. 10.1016/j.wear.2010.04.028Suche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Review
- Status and development of powder metallurgy nickel-based disk superalloys
- Original Contributions
- Numerical simulation and global heat transfer computations of thermoelastic stress in Cz silicon crystal
- Influence of inter-object relations on the microstructural evolution during hot upsetting of a steel billet determined by numerical simulation
- Structural and electrochemical properties of lithiated conical carbon nanotubes as anode materials for lithium ion accumulating systems
- Effect of nitrogen content on microstructure, mechanical properties, and corrosion behaviour of coarse-grained heat-affected zone of nitrogen-containing austenitic stainless steel
- The effect of thermomechanical treatment on the microstructure and mechanical properties of high Mn–Cr austenitic steels
- Effect of nanostructured Al on microstructure, microhardness and sliding wear behavior of Al–xGnP composites by powder metallurgy (PM) route
- Surface mechanical attrition treatment of commercially pure titanium by electromagnetic vibration
- High-temperature oxidation resistance behavior of porous Ni-16Cr-9Al materials
- Effect of sintering temperature on structural and magnetic properties of bulk Mg-ferrites
- Contents
- Contents
- DGM News
- DGM News
Artikel in diesem Heft
- Review
- Status and development of powder metallurgy nickel-based disk superalloys
- Original Contributions
- Numerical simulation and global heat transfer computations of thermoelastic stress in Cz silicon crystal
- Influence of inter-object relations on the microstructural evolution during hot upsetting of a steel billet determined by numerical simulation
- Structural and electrochemical properties of lithiated conical carbon nanotubes as anode materials for lithium ion accumulating systems
- Effect of nitrogen content on microstructure, mechanical properties, and corrosion behaviour of coarse-grained heat-affected zone of nitrogen-containing austenitic stainless steel
- The effect of thermomechanical treatment on the microstructure and mechanical properties of high Mn–Cr austenitic steels
- Effect of nanostructured Al on microstructure, microhardness and sliding wear behavior of Al–xGnP composites by powder metallurgy (PM) route
- Surface mechanical attrition treatment of commercially pure titanium by electromagnetic vibration
- High-temperature oxidation resistance behavior of porous Ni-16Cr-9Al materials
- Effect of sintering temperature on structural and magnetic properties of bulk Mg-ferrites
- Contents
- Contents
- DGM News
- DGM News