Influence of inter-object relations on the microstructural evolution during hot upsetting of a steel billet determined by numerical simulation
-
Antonio Lourenço Batista de Souza
and Oscar Balancin
Abstract
The aim of this work was to study the effect of the interaction between tools and workpiece on the plastic behavior and microstructural evolution of a carbon steel during hot deformation of a cylinder with diameter of 600 mm and height of 1 000 mm. The metallurgical processing was simulated applying the finite elements method. Temperature, deformation and strain rate gradients, recrystallized volume fraction, and grain size distribution were determined using this technique. The data obtained shown that the level of friction and the heat transfer between tools and material have strong influence on the deformation and microstructure gradients, creating large grain size heterogeneities.
References
[1] W.A.Backofen: Deformation Processing, Addison-Wesley Publishing Company, Massachusetts (1972).Search in Google Scholar
[2] P.J.Hurley, B.C.Muddle, P.D.Hodgson: Metall. Mater. Trans.A 32 (2001) 1507. 10.1007/s11661-001-0238-zSearch in Google Scholar
[3] C.M.Sellars: Mater. Sci. Technol.6 (1990) 1072. 10.1179/mst.1990.6.11.1072Search in Google Scholar
[4] S.H.Cho, K.B.Kang, J.J.Jonas: ISIJ Int.41 (2001) 63. 10.2355/isijinternational.41.63Search in Google Scholar
[5] F.Siciliano, J.J.Jonas: Metall. Mater. Trans.A 31 (2000) 511. 10.1007/s11661-000-0287-8Search in Google Scholar
[6] G.Z.Quan, G.S.Li, T.Chen, Y.X.Wang, Y.W.Zhang, J.Zhou: Mater. Sci. Eng.A 528 (2011) 4643. 10.1016/j.msea.2011.02.090Search in Google Scholar
[7] I.Salvatori, T.Inoue, K.Nagai: ISIJ Int.42 (2002) 744. 10.2355/isijinternational.42.744Search in Google Scholar
[8] R.C.Souza, E.S.Silva, A.M.JorgeJr., J.M.Cabrera, O.Balancin: Mater. Sci. Eng.A 582 (2013) 96. 10.1016/j.msea.2013.06.037Search in Google Scholar
[9] H.Ding, K.Hirai, T.Homma, S.Kamado: Comput. Mater. Sci47 (2010) 919. 10.1016/j.commatsci.2009.11.024Search in Google Scholar
[10] H.Jiang, L.Yang, J.Dong, M.Zhang, Z.Yao: Mater. Des.104 (2016) 162. 10.1016/j.matdes.2016.05.033Search in Google Scholar
[11] X.Li, M.Wang, F.Du: J. Iron. Steel Res. Int.15 (2008) 42. 10.1016/S1006-706X(08)60142-9Search in Google Scholar
[12] X.Li, M.Wang, F.Du: Mater. Sci. Eng.A 408 (2005) 33. 10.1016/j.msea.2005.04.065Search in Google Scholar
[13] Y.S.Jang, D.C.Ko, B.M.Kim: J. Mater. Process. Technol.101 (2000) 85. 10.1016/S0924-0136(99)00460-4Search in Google Scholar
[14] DEFORM 3D Version 10.1, User Guide. Scientific Forming Technology Corporation, Columbus, Ohio, USA.Search in Google Scholar
[15] H.J.McQueen, N.D.Ryan: Mater. Sci. Eng.A 322 (2002) 43. 10.1016/S0921-5093(01)01117-0Search in Google Scholar
[16] A.Cingara, L. St.Germaine, H.J.McQueen, in: A.Deardo (Ed.), Processing Microstructure and Properties of HSLA Steels, Met. Soc. AIME, Warrendale, PA, 1988, p. 91.Search in Google Scholar
[17] K.P.Rao, E.B.Hawbolt, H.J.McQueen, DBaragar: Can. Metall. Q.32 (1993) 165. 10.1179/cmq.1993.32.2.165Search in Google Scholar
[18] R.M.Cutrim, S.F.Rodrigues, G.S.Reis, E.S.Silva, C.AranasJr., O.Balancin: J. Mater. Eng. Perform.25 (2016) 5102. 10.1007/s11665-016-2365-0Search in Google Scholar
[19] P.D.Hodgson, R.K.Gibbs: ISIJ Int.32 (1992) 1329. 10.2355/isijinternational.32.1329Search in Google Scholar
[20] C.M.Sellars, in: C.M.Sellars, G.Davies (Eds.), Hot Working and Forming Processes, The Metals Soc., London, 1980, p. 3.Search in Google Scholar
[21] T.Senuma, H.Yada in: N.Hansen et al. (Eds.), 7th Riso Int. Symp., Riso, Roskilde, Denmark, 1986, p. 547.Search in Google Scholar
[22] H.Yada, in: G.E.Ruddle, A.F.Crawley (Eds.), Proc. Int. Symp. On Accelerated Cooling of Rolled Steel, Pergamon, 1988, p. 105.Search in Google Scholar
[23] P.D.Hodgson, L.O.Hazeldon, D.L.Matthewa, R.E.Gloss, in: M.Korchynsky et al. (Eds.), Microalloying’95, ISS of AIME, Warrendale, PA USA, 1995, p. 341.Search in Google Scholar
[24] W.Roberts, A.Sandberg, T.Siwecki, T.Werlefors: Int. Conf. Tech. Applications of HSLA Steels, ASM, Philadelphia, PA, 1983, p. 67.Search in Google Scholar
[25] S.Kim, Y.Lee, B.L.Jang: Mater. Sci. Eng.A 357 (2001) 235. 10.1016/S0921-5093(03)00165-5Search in Google Scholar
[26] H.Grass, C.Krempaszky, T.Reip, E.Werner: Comput. Mater. Sci28 (2003) 469. 10.1016/j.commatsci.2003.06.003Search in Google Scholar
[27] M.P.Phaniraj, B.B.Behera, A.K.Lahiri: J. Mater. Process. Technol.178 (2006) 388. 10.1016/j.jmatprotec.2006.03.173Search in Google Scholar
[28] Y.Xu, Y.Yu, X.Liu, G.Wang: J. Iron. Steel Res. Int.14 (2007) 42. 10.1016/S1006-706X(07)60088-0Search in Google Scholar
[29] M.Wang, X.Zang, X.Li, F.Du: J. Iron. Steel Res. Int.14 (2007) 30. 10.1016/S1006-706X(07)60039-9Search in Google Scholar
[30] A.L.I.Moraes, O.Balancin: Mater. Res.18 (2015) 92. 10.1590/1516-1439.273114Search in Google Scholar
[31] M.B.R.Silva, J.Gallego, J.M.Cabrera, O.Balancin, A.M.JorgeJr.: Mater. Sci. Eng.A 637 (2015) 189. 10.1016/j.msea.2015.04.049Search in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Review
- Status and development of powder metallurgy nickel-based disk superalloys
- Original Contributions
- Numerical simulation and global heat transfer computations of thermoelastic stress in Cz silicon crystal
- Influence of inter-object relations on the microstructural evolution during hot upsetting of a steel billet determined by numerical simulation
- Structural and electrochemical properties of lithiated conical carbon nanotubes as anode materials for lithium ion accumulating systems
- Effect of nitrogen content on microstructure, mechanical properties, and corrosion behaviour of coarse-grained heat-affected zone of nitrogen-containing austenitic stainless steel
- The effect of thermomechanical treatment on the microstructure and mechanical properties of high Mn–Cr austenitic steels
- Effect of nanostructured Al on microstructure, microhardness and sliding wear behavior of Al–xGnP composites by powder metallurgy (PM) route
- Surface mechanical attrition treatment of commercially pure titanium by electromagnetic vibration
- High-temperature oxidation resistance behavior of porous Ni-16Cr-9Al materials
- Effect of sintering temperature on structural and magnetic properties of bulk Mg-ferrites
- Contents
- Contents
- DGM News
- DGM News
Articles in the same Issue
- Review
- Status and development of powder metallurgy nickel-based disk superalloys
- Original Contributions
- Numerical simulation and global heat transfer computations of thermoelastic stress in Cz silicon crystal
- Influence of inter-object relations on the microstructural evolution during hot upsetting of a steel billet determined by numerical simulation
- Structural and electrochemical properties of lithiated conical carbon nanotubes as anode materials for lithium ion accumulating systems
- Effect of nitrogen content on microstructure, mechanical properties, and corrosion behaviour of coarse-grained heat-affected zone of nitrogen-containing austenitic stainless steel
- The effect of thermomechanical treatment on the microstructure and mechanical properties of high Mn–Cr austenitic steels
- Effect of nanostructured Al on microstructure, microhardness and sliding wear behavior of Al–xGnP composites by powder metallurgy (PM) route
- Surface mechanical attrition treatment of commercially pure titanium by electromagnetic vibration
- High-temperature oxidation resistance behavior of porous Ni-16Cr-9Al materials
- Effect of sintering temperature on structural and magnetic properties of bulk Mg-ferrites
- Contents
- Contents
- DGM News
- DGM News