Startseite High-temperature oxidation resistance behavior of porous Ni-16Cr-9Al materials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

High-temperature oxidation resistance behavior of porous Ni-16Cr-9Al materials

  • Liang Wu , Ge Yang , Yang Xu , Yifeng Xiao , Xi Li , Yanfei Xu , Jinwen Qian , Yan Ou , Minghua Zhang , Qiankun Zhang und Yuehui He
Veröffentlicht/Copyright: 4. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The oxidation behavior of porous Ni-16Cr-9Al alloys at 800 and 1 000 °C was studied using the isothermal temperature oxidation method. The differences in surface morphology, phase and pore structure between oxidized and non-oxidized materials were characterized by means of scanning electron microscopy, X-ray diffraction analysis and mercury intrusion porosimetry. The results revealed that the oxidation rate of the samples which were oxidized for 420 h at 800 °C was 0.012%2 h−1 and the oxidation products were Al2O3 and Cr2O3. The oxidation rate of the samples which were oxidized for 390 h at 1 000 °C was 0.415%2 h−1 and the oxidation products were Al2O3, Cr2O3 and Ni(Cr, Al)2O4. All the oxidation kinetics curves obeyed the parabolic law, exhibiting excellent high temperature oxidation resistance.


Correspondence address, Xi Li, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong NSW 2522 Australia, Australian Nuclear Science and Technology Organization, Lucas Heights NSW 2234 Australia, Tel.: +6 1450457795, E-mail:

References

[1] S.H.Choi, S.Y.Kim, J.Y.Yun, Y.M.Kong, B.K.Kim, K.A.Lee: Met. Mater. Int.17 (2011) 301. 10.1007/s12540-011-0418-3Suche in Google Scholar

[2] R.R.Unocic, G.B.Viswanathan, P.M.Sarosi, S.Karthikeyan, J.Li, M.J.Mills, Mater. Sci. Eng., A. 483 (2008) 25. 10.1016/j.msea.2006.08.148Suche in Google Scholar

[3] B.Jankovic, B. Adnadevic, S.Mentus, Thermochim: Acta Mater.456 (2007) 48. 10.1016/j.tca.2007.01.033Suche in Google Scholar

[4] L.Kloc, J.Fiala, J.Cadek: Mater. Sci. Eng.A 202 (1995) 11. 10.1016/0921-5093(95)09813-5Suche in Google Scholar

[5] H.S.Lee, J.S.Jung, K.B.Yoo, E.H.Kim: J. Met. Mater.48 (2010) 277. 10.3365/kjmm.2010.48.04.277Suche in Google Scholar

[6] D.A.Akinlade, W.F.Caley, N.L.Richards, M.C.Chaturvedi: Mater. Sci. Eng.A 488 (2008) 221. 10.1016/j.msea.2007.11.019Suche in Google Scholar

[7] H.Choe, D.C.Dunand: Mater. Sci. Eng.A 384 (2004) 184. 10.1016/j.msea.2004.06.045Suche in Google Scholar

[8] A.Ul–Hamid: Corros. Sci.46 (2004) 27. 10.1016/S0010-938X(03)00100-8Suche in Google Scholar

[9] J.S.Oh, M.C.Shim, M.H.Park, K.A.Lee: Met. Mater. Int.20 (2014) 915. 10.1007/s12540-014-5017-7Suche in Google Scholar

[10] G.J.Davies, S.Zhen: J. Mater. Sci.18 (1983) 1899. 10.1007/bf00554981Suche in Google Scholar

[11] J.Banhart: Mater. Sci.46 (2001) 559. 10.1016/s0921-5093(02)00582-8Suche in Google Scholar

[12] S.K.Mukherjee, G.S.Upadhyaya: Oxid. Met.23 (1985) 177. 10.1007/bf00659902Suche in Google Scholar

[13] A.Bautista, C.Moral, F.Velasco, C.Simal, S.Guzmán: J. Mater. Process. Technol.189 (2007) 344. 10.1016/j.jmatprotec.2007.02.005Suche in Google Scholar

[14] A.Bautista, F.Velasco, M.Campos, M.E.Rabanal, J.M.Torralba: Oxid. Met.59 (2003) 373. 10.1023/a:1023000329514Suche in Google Scholar

[15] A.Bautista, F.Velasco, J.Abenojar: Corros. Sci.45 (2003) 1343. 10.1016/s0010-938x(02)00217-2Suche in Google Scholar

[16] Z.Zheng, Y.Jiang, H.X.Dong, L.M.Tang, Y.H.He, B.Y.Huang: Trans. Nonferrous Met. Soc. China.19 (2009) 581. 10.1016/s1003-6326(08)60316-7Suche in Google Scholar

[17] V.K.Sikka, S.C.Deevi, S.Viswanathan, R.W.Swindeman, M.L.Santella: Intermetallics.8 (2000) 1329. 10.1016/s0966-9795(00)00078-9Suche in Google Scholar

[18] B.P.Bewlay, J.D.Rigney, R.Didomizio. Oxide-forming protective coatings for niobium-based materials. US Patent: us 8247085 (2012).Suche in Google Scholar

[19] G.C.Wood: Oxid. Met.2 (1970) 11. 10.1007/bf00603581Suche in Google Scholar

[20] H.P.Tang, Y.Wang, Y.Liu, W.J.Li, C.Han: Journal of Central South University.20 (2013) 3345. 10.1007/s11771-013-1858-3Suche in Google Scholar

[21] H.X.Dong, Y.Jiang, Y.H.He, J.Zou, N.P.Xu, B.Y.Huang, C.T.Liu, P.K.Liaw: Mater. Chem. Phys.122 (2010) 417. 10.1016/j.matchemphys.2010.03.017Suche in Google Scholar

[22] S.Taniguchi, T.Shibata: Oxid. Met.28 (1987) 255. 10.1007/BF00656704Suche in Google Scholar

[23] Y.C.Pan, T.H.Chuang, Y.D.Yao: J. Mater. Sci.26 (1991) 6097. 10.1007/bf01113890Suche in Google Scholar

[24] G.R.Wallwork, A.Z.Hed: Oxid. Met.3 (1971) 171. 10.1007/bf00603485Suche in Google Scholar

[25] H.M.Tawancy, N.Sridhar: Oxid. Met.37 (1992) 143. 10.1007/bf00665187Suche in Google Scholar

[26] Y.Zhao, G.X.Yang, C.Yuan, J.T.Guo, C.S.Liu: Corrosion Science and Protection Technology.27 (2007) 1. 10.3969/j.issn.1002-6495.2007.01.001Suche in Google Scholar

[27] H.P.Tang, Y.Wang, Y.Liu, W.J.Li, C.Han: J. Cent. South Univ.20 (2013) 3345. 10.1007/s11771-013-1858-3Suche in Google Scholar

[28] G.J.Cao, L.Geng, Z.Z.Zheng, M.Naka: Intermetallics.15 (2007) 1672. 10.1016/j.intermet.2007.07.003Suche in Google Scholar

[29] G.F.Chen, H.Y.Lou: Corros. Rev.18 (2000) 195. 10.1515/CORRREV.2000.18.2-3.195Suche in Google Scholar

[30] C.S.Giggins, F.S.Pettit: J. Electrochem. Soc.118 (1971) 1782. 10.1149/1.2407837Suche in Google Scholar

[31] C.B.Sun, G.Y.Fu, Q.Liu: Journal of Materials and Metallurgy.3 (2004) 313. 10.14186/j.cnki.1671-6620.2004.04.016Suche in Google Scholar

Received: 2018-10-08
Accepted: 2019-05-10
Published Online: 2019-10-04
Published in Print: 2019-10-16

© 2019, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111822/pdf
Button zum nach oben scrollen