Startseite Surface mechanical attrition treatment of commercially pure titanium by electromagnetic vibration
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Surface mechanical attrition treatment of commercially pure titanium by electromagnetic vibration

  • Muhammad Mansoor , Gul Hameed Awan , Jian Lu , Khalid Mehmood Ghauri und Shaheed Khan
Veröffentlicht/Copyright: 4. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the domain of incremental nanotechnology, surface mechanical attrition treatment has been seen as a significant technique to transform the surface of a material into a nano-crystalline layer, while preserving the surface chemistry unchanged. In the present study, a process was investigated to develop a nano-crystalline layer on the surface of titanium using an electromagnetic vibration system. The surface mechanical attrition treatment was carried out on commercially pure titanium for various durations (i.e., 30, 60, 90 and 120 min). The characterization showed that a maximum depth of 15 μm of nanocrystalline layer was obtained after 90 min of treatment. Further increase in time did not contribute towards development of any thicker layer. The crystallite size varied from 140 to 35 nm with increasing treatment durations. Tensile strength was increased from 645 MPa (untreated sample) to 711 MPa (120 min duration); however elongation was decreased by 43 %.


Correspondence address, Dr. Muhammad Mansoor, Metallurgy Division, Institute of Industrial Control Systems, Dhakni Gangal, Rawalpindi, Pakistan, Tel.: +923125051584, Fax: +92515492739, E-mail:

References

[1] G.N.Wang, C.T.Wood, J.K.Robert, L.G.Terence: J. Mater. Sci.47 (2012) 4779. 10.1007/s10853-011-6231-zSuche in Google Scholar

[2] A.Bachmaier, J.Keckes, K.S.Kormout, R.Pippan: Philos. Mag. Lett.94 (2014) 9. 10.1080/09500839.2013.852284Suche in Google Scholar

[3] S.M.Arab, A.Akbarzadeh: J. Magn. Alloys1 (2013) 145. 10.1016/j.jma.2013.07.001Suche in Google Scholar

[4] S.C.Pandey, M.A.Joseph, M.S.Pradeep, K.Raghavendra, V.R.Ranganath, K.VenkateswarG.Terence: Mater. Sci. Eng.A 534 (2012) 282. 10.1016/j.msea.2011.11.070Suche in Google Scholar

[5] B.Zhao, F.Liu, G.Li, R.Xu, J.Yang: Met. Mater. Inter.19 (2003) 549. 10.1007/s12540-013-3024-8Suche in Google Scholar

[6] D.Fabijanic, A.Taylor, K.D.Ralston, M.Zhang, N.Birbilis: Corrosion69 (2013) 527. 10.5006/0763Suche in Google Scholar

[7] N.Li, Y.D.Li, Y.X.Li, Y.H.Wu, Y.F.Zhenga, Y.Han: Mater. Sci. Eng.C 35 (2014) 314. PMid:24411370; 10.1016/j.msec.2013.11.010Suche in Google Scholar PubMed

[8] P.W.Bridgman: J. Appl. Phys.14 (1943) 273. 10.1063/1.1714987Suche in Google Scholar

[9] Y.Xu, M.Umemoto, K.Tsuchiya: Mater. Trans.45 (2004) 376. 10.2320/matertrans.45.376Suche in Google Scholar

[10] X.Wu, N.R.Tao, Y.Hong, J.Lu, K.Lu: J. Phys.D 38 (2005) 4140. 10.1088/0022-3727/38/22/019Suche in Google Scholar

[11] N.R.Tao, W.P.Tong, Z.B.Wang, W.Wang, M.L.Sui, J.Lu, K.Lu: J. Mater. Sci. Technol.19 (2003) 563.Suche in Google Scholar

[12] B.Arifvianto, Suyitno, M.Mahardika: Appl. Surf. Sci.258 (2012) 4538. apsusc.2012.01.021. 10.1016/jSuche in Google Scholar

[13] X.Wu, N.Tao, Y.Hong, B.Xu, J.Lu, K.Lu: Acta Mater.50 (2002) 2075. 10.1016/S1359-6454(02)00051-4Suche in Google Scholar

[14] M.Mansoor, J.Lu: Key Eng. Mater.442 (2010) 152. 10.4028/www.scientific.net/KEM.442.152Suche in Google Scholar

[15] Z.Pu, S.Yang, G.-L.Song, O.W.Dillon, D.A.Puleo, I.S.Jawahir: Scr. Mater.65 (2011) 520. 10.1016/j.scriptamat.2011.06.013Suche in Google Scholar

[16] W.L.Li, N.R.Tao, K.Lu: Scr. Mater.59 (2008) 546. 10.1016/j.scriptamat2008.05.003Suche in Google Scholar

[17] K.Lu, J.Lu: J. Mater. Sci. Technol.15 (1999) 193. 10.1179/026708399101505581Suche in Google Scholar

[18] D.H.Menzel: Fundamental Formulas of Physics Vol-I, Dover Publications, New York (1960).Suche in Google Scholar

[19] W.F.Hughes, E.W.Gaylord: Basic Equations of Engineering Science, McGraw Hill, New York (1964). 10.1115/1.3653133Suche in Google Scholar

[20] Z.Gau, L.Tan: Fundamentals and applications of nanomaterials, Artech House, Norwood, (2009).Suche in Google Scholar

[21] B.D.Cullity: Elements of X-ray diffraction, Addison-Wiseley Publishing Company, Massachusetts (1977).Suche in Google Scholar

[22] H.P.Klug, L.F.Alexander: X-ray diffraction procedures for polycrystalline and amorphous materials, Wiley Publishers, New York (1974).Suche in Google Scholar

[23] E.J.Mittemeijer, U.Welzel: Z. Kristallogr.223 (2008) 552. 10.1524/zkri.2008.1213Suche in Google Scholar

[24] S.Nemat-Nasser, W.G.Guo, J.Y.Cheng: Acta Mater.47 (1999) 3705. 10.1016/S1359-6454(99)00203-7Suche in Google Scholar

[25] J.L.Sun, P.W.Trimby, X.Si, X.Z.Liao, N.R.Tao, J.T.Wang: Scr. Mater.68 (2013) 475. 10.1016/j.scriptamat.2012.11.025Suche in Google Scholar

[26] N.R.Tao, J.Lu, K.Lu: Mater. Sci. Forum579 (2008) 91. 10.4028/www.scientific.net/MSF.579.91Suche in Google Scholar

[27] M.Chemkhi, D.Retraint, A.Roos, G.Montay, C.Demangel: 12th International Workshop on Plasma Based Ion Implantation and Deposition, Poitiers, France, (2013).Suche in Google Scholar

[28] C.Lipson, N.J.Sheth: Statistical design if engineering experiments, McGraw Hills, New York (1984) 33.Suche in Google Scholar

[29] D.E.Paul, B.J.Kohser, A.Ronald: Materials and Processes in Manufacturing, Wiley (2003).Suche in Google Scholar

[30] W.F.Smith, J.Hashemi: Foundations of Materials Science and Engineering, McGraw-Hill (2006).Suche in Google Scholar

Received: 2019-02-11
Accepted: 2019-04-02
Published Online: 2019-10-04
Published in Print: 2019-10-16

© 2019, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111818/pdf
Button zum nach oben scrollen