Thermodynamic calculation of phase equilibria in the Bi–Mg–Zn ternary system
-
Chunju Niu
Abstract
On the basis of the experimental phase equilibria of the Bi–Mg–Zn ternary system, the thermodynamic assessment of the Bi–Mg–Zn ternary system was carried out by means of the CALPHAD (CALculation of PHAse Diagram) technique. The Gibbs free energies of the solid solution phases (Rhombohedral_A7, Hcp_A3 and Hcp_Zn) were described by the substitutional solution model, and that of the liquid phase was described by the associate model with the constituent species Bi, Bi2Mg3, Mg and Zn. The non-stoichiometric compound, α-Bi2Mg3 as well as its high temperature allotrope β-Bi2Mg3 were described by the sublattice models, (Bi,Zn,Va)2(Mg,Zn)3 and (Bi,Zn)1(Bi,Zn,Va)3(Mg,Zn)6, respectively. In order to obtain a set of self-consistent thermodynamic data, the thermodynamic parameters of the phases, including liquid, α-Bi2Mg3 and β-Bi2Mg3, of the Bi–Mg–Zn ternary system were optimized while the thermodynamic data of other phases were adopted directly from the literature reports of the constituent binary systems. With this newly developed thermodynamic database, the CALPHAD results can well reproduce the experimental phase diagram information of the Bi–Mg–Zn ternary system. The solidification processes of a typical Bi–Mg–Zn alloy are calculated and analyzed using the phase equilibrium approach and the Gulliver–Scheil model in comparison with the experimental investigation.
References
[1] B.L.Mordike, T.Ebert: Metall. Mater. Sci. Eng. A302 (2001) 37. 10.1016/S0921-5093(00)01351-4Suche in Google Scholar
[2] C.L.Mendis, K.U.Kainer, N.Hort: JOM.67 (2015) 2427. 10.1007/s11837-015-1561-ySuche in Google Scholar
[3] B.Langelier, G.Sha, A.Korinek, P.Donnadieu, S.P.Ringer, S.Esmaeili: Mater. Des.119 (2017) 290. 10.1016/j.matdes.2017.01.073Suche in Google Scholar
[4] B.Langelier, A.Korinek, P.Donnadieu, S.Esmaeili: Mater. Charact.120 (2016) 18. 10.1016/j.matchar.2016.08.010Suche in Google Scholar
[5] J.F.Nie: Scripta Mater.48 (2003) 1009. 10.1016/S1359-6462(02)00497-9Suche in Google Scholar
[6] S.J.Meng, H.Yu, H.W.Cui, J.Zhang, W.M.Zhao, Z.F.Wang, C.L.Qin: Chin J Nonferrous Met.27 (2017) 894. 10.19476/j.ysxb.1004.0609.2017.05.003Suche in Google Scholar
[7] T.T.Sasaki, T.Ohkubo, K.Hono: Scr. Mater.61 (2009) 72. 10.1016/j.scriptamat.2009.03.015Suche in Google Scholar
[8] C.J.Niu, C.R.Li, Z.M.Du, C.P.Guo, Y.J.Jing: Acta Metall. Sin.25 (2012) 19. 10.11890/1006-7191-121-19Suche in Google Scholar
[9] J.Vizdal, M.H.Braga, A.Kroupa, K.W.Richter, D.Soares, L.F.Malheiros, J.Ferreira: Calphad31 (2007) 438. 10.1016/j.calphad.2007.05.002Suche in Google Scholar
[10] P.Liang, T.Tarfa, J.A.Robinson, S.Wagner, P.Ochin, M.G.Harmelin, H.L.Lukas, F.Aldinger: Thermochim. Acta314 (1998) 87. 10.1016/S0040-6031(97)00458-9Suche in Google Scholar
[11] E.Scheil, B.Glauner: Z. Metallkd31 (1939) 80.Suche in Google Scholar
[12] E.Scheil, B.Glauner: Z. Metallkd31 (1939) 76.Suche in Google Scholar
[13] C.S.Oh, S.Y.Kang, D.N.Lee: Calphad16 (1992) 181. 10.1016/0364-5916(92)90006-JSuche in Google Scholar
[14] M.Paliwal, I.H.Jung: Calphad33 (2009) 744. 10.1016/j.calphad.2009.10.002Suche in Google Scholar
[15] C.J.Niu, C.R.Li, Z.M.Du, C.P.Guo, S.C.Chen: Calphad39 (2012) 37. 10.1016/j.calphad.2012.08.003Suche in Google Scholar
[16] D.V.Malakhov: Calphad24 (2000) 1. 10.1016/S0364-5916(00)00011-0Suche in Google Scholar
[17] S.S.Kim, T.H.Sanders: Z. Metalld.94 (2003) 390. 10.3139/146.030390Suche in Google Scholar
[18] R.Agarwal, S.G.Fries, H.L.Lukas, G.Petzow, F.Sommer, T.G.Chart, G.Effenberg: Z. Metalld.83 (1992) 216.Suche in Google Scholar
[19] F.G.Meng, J.Wang, L.B.Liu, Z.P.Jin: J. Alloys Compd.508 (2010) 570. 10.1016/j.jallcom.2010.08.124Suche in Google Scholar
[20] P.Liang, H.J.Seifert, H.L.Lukas, G.Ghosh, G.Effenberg, F.Aldinger: Calphad22 (1998) 527. 10.1016/S0364-5916(99)00009-7Suche in Google Scholar
[21] M.Ohno, R.Schmid-Fetzer: Int. J. Mater. Res.97 (2006) 526. 10.3139/146.101268Suche in Google Scholar
[22] M.Aljarrah, U.Aghaulor, M.Medraj: Intermetallics15 (2007) 93. 10.1016/j.intermet.2006.03.011Suche in Google Scholar
[23] H.Y.Qi, G.X.Huang, R.D.Liu, K.Zhang, L.B.Liu, Z.P.Jin: J. Alloys Compd.497 (2010) 336. 10.1016/j.jallcom.2010.03.062Suche in Google Scholar
[24] A.T.Dinsdale: Calphad15 (1991) 317. 10.1016/0364-5916(91)90030-NSuche in Google Scholar
[25] A.T.Dinsdale: (2002) SGTE Unary databse, Version 4.4, 2002.Suche in Google Scholar
[26] F.Sommer: Z. Metalld73 (1982) 72.10.1515/ijmr-1982-730202Suche in Google Scholar
[27] F.Sommer: Z. Metalld73 (1982) 77.10.1515/ijmr-1982-730203Suche in Google Scholar
[28] R Schmid, YA Chang: Calphad9 (1985) 363. 10.1016/0364-5916(85)90004-5Suche in Google Scholar
[29] B.Sundman, B.Jansson, J.O.Andersson: Calphad9 (1985) 153. 10.1016/0364-5916(85)90021-5Suche in Google Scholar
[30] G.Mima, Y.Tanaka: Transactions of the Japan Institute of Metals12 (1971) 323. 10.2320/matertrans1960.12.323Suche in Google Scholar
[31] J.Buha: Mater. Sci. Eng. A492 (2008) 11. DOI: doi.org/10.1016/j.msea.2008.02.038. 10.1016/j.msea.2008.02.038Suche in Google Scholar
[32] J.S.Chun, J.G.Byrne: J. Mater. Sci.4 (1969) 861. 10.1007/BF00549777Suche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Original Contributions
- Experimental investigation of gas/slag/matte/tridymite equilibria in the Cu–Fe–O–S–Si system in controlled gas atmosphere at T = 1 200 °C and P(SO2) = 0.1 atm
- Thermodynamic calculation of phase equilibria in the Bi–Mg–Zn ternary system
- Effect of pre-rafting on creep properties of Ni-based single crystal superalloy
- Effect of thermomechanical treatment on the microstructures and mechanical properties of an ultrafine grained steel using bainite starting microstructure
- Deformation response and microstructural evolution of as-cast Mg alloys AM30 and AM50 during hot compression
- Effects of graphene nanoplatelets on the tribological, mechanical, and thermal properties of Mg-3Al alloy nanocomposites
- Increasing cold workability of Ti-6Al-4V alloy via thermo-mechanical processing: simulation and experiment
- Synthesis, characterization, and possible application as sorbents of new low-cost aluminosilicate materials with different Si/Al ratios
- Self-assembly of Pd@Au core/shell nanosheets used as a highly sensitive SERS substrate based on the determination of trace fluorescent dye
- Short Communications
- On the material characteristics of a high carbon cast austenitic stainless steel after solution annealing followed by quenching in a CNT nanofluid
- Influence of in-situ Al2O3 content on mechanical properties of Al2O3 reinforced Fe–Cr–Ni alloys
- Novel synthesis of Ti2SC powder using FeS2 as a sulphur source
Artikel in diesem Heft
- Original Contributions
- Experimental investigation of gas/slag/matte/tridymite equilibria in the Cu–Fe–O–S–Si system in controlled gas atmosphere at T = 1 200 °C and P(SO2) = 0.1 atm
- Thermodynamic calculation of phase equilibria in the Bi–Mg–Zn ternary system
- Effect of pre-rafting on creep properties of Ni-based single crystal superalloy
- Effect of thermomechanical treatment on the microstructures and mechanical properties of an ultrafine grained steel using bainite starting microstructure
- Deformation response and microstructural evolution of as-cast Mg alloys AM30 and AM50 during hot compression
- Effects of graphene nanoplatelets on the tribological, mechanical, and thermal properties of Mg-3Al alloy nanocomposites
- Increasing cold workability of Ti-6Al-4V alloy via thermo-mechanical processing: simulation and experiment
- Synthesis, characterization, and possible application as sorbents of new low-cost aluminosilicate materials with different Si/Al ratios
- Self-assembly of Pd@Au core/shell nanosheets used as a highly sensitive SERS substrate based on the determination of trace fluorescent dye
- Short Communications
- On the material characteristics of a high carbon cast austenitic stainless steel after solution annealing followed by quenching in a CNT nanofluid
- Influence of in-situ Al2O3 content on mechanical properties of Al2O3 reinforced Fe–Cr–Ni alloys
- Novel synthesis of Ti2SC powder using FeS2 as a sulphur source