Corrosion behavior of stir-cast Al–TiB2 metal matrix composites
-
Suswagata Poria
, Goutam Sutradhar and Prasanta Sahoo
Abstract
The present study evaluates the corrosion behavior of Al–TiB2 metal matrix composites in 3.5% NaCl solution. Composites are fabricated using stir-casting with varying wt.% of TiB2. Composite surfaces are characterized using scanning electron microscopy (SEM) images. Micro-hardness values of composites are obtained using a Vicker's micro-hardness tester. The hardness of the base matrix is enhanced due to the incorporation of hard TiB2 phase. Corrosion characteristics of composites are investigated using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. Corrosion resistance of composites is estimated from the parameters such as corrosion potential, corrosion current, linear polarization resistance etc. Corrosion resistance of the base alloy improves due to incorporation of TiB2 but only up to a certain amount of TiB2 phase in the matrix. The composite with 1 wt.% TiB2 shows the highest corrosion resistance. Corroded surfaces are studied using SEM images that reveal localized pitting corrosion on composite surfaces.
References
[1] T.Miyajima, Y.Iwai: Wear255 (2003) 606. 10.1016/S0043-1648(03)00066-8Search in Google Scholar
[2] N.Kumar, G.Gautam, R.K.Gautam, A.Mohan, S.Mohan: J. Inst. Eng. (India) Series D97 (2016) 233. 10.1007/s40033-015-0091-7Search in Google Scholar
[3] N.C.Chawla, K.K.Chawla: JoM.58 (2006) 67. 10.1007/s11837-006-0231-5Search in Google Scholar
[4] Y.Bai, J.Xing, S.Ma, Q.Huang, Y.He, Z.Liu, Y.Gao: Mater. Charact.78 (2013) 69. 10.1016/j.matchar.2013.01.014Search in Google Scholar
[5] K.L.Tee, L.Lu, M.O.Lai: Wear240 (2000) 59. 10.1016/S0043-1648(00)00337-9Search in Google Scholar
[6] Y.Shimizu, T.Nishimura, I.Matsushima: Mater. Sci. Eng. A198 (1995) 113. 10.1016/0921-5093(95)80065-3Search in Google Scholar
[7] N.M.Kumar, S.S.Kumaran, L.A.Kumaraswamidhas: J. Alloys Compd.652 (2015) 244. 10.1016/j.jallcom.2015.08.205Search in Google Scholar
[8] K.Gopinath, R.Balasubramaniam, V.S.Murthy: J. Mater. Sci. Lett.20 (2001) 793. 10.1023/A:1010985907514Search in Google Scholar
[9] F.Toptan, A.C.Alves, I.Kerti, E.Ariza, L.A.Rocha: Wear306 (2013) 27. 10.1016/j.wear.2013.06.026Search in Google Scholar
[10] S.Candan, E.Bilgic: Mater. Lett.58 (2004) 2787. 10.1016/j.matlet.2004.04.009Search in Google Scholar
[11] V.A.Katkar, G.Gunasekaran, A.G.Rao, P.M.Koli: Corros. Sci.53 (2011) 2700. 10.1016/j.corsci.2011.04.023Search in Google Scholar
[12] S.Candan: Mater. Lett.58 (2004) 3601. 10.1016/j.matlet.2004.06.053Search in Google Scholar
[13] V.Raghavan: Physical metallurgy: principles and practice, PHI Learning Pvt. Ltd., New Delhi (2015).Search in Google Scholar
[14] I.Sulima, R.Kowalik, P.Hyjek: J. Alloys Compd.688 (2016) 1195. 10.1016/j.jallcom.2016.07.132Search in Google Scholar
[15] M.D.Salvador, V.Amigo, N.Martinez, C.Ferrer: J. Mater. Process Technol.143 (2003) 598. 10.1016/S0924-0136(03)00438-2Search in Google Scholar
[16] S.Suresh, N.S.Moorthi, S.C.Vettivel, N.Selvakumar, G.R.Jinu: Mater. Sci. Eng. A612 (2014) 16. 10.1016/j.msea.2014.06.024Search in Google Scholar
[17] S.Suresh, N.S.Moorthi, S.C.Vettivel, N.Selvakumar: Mater. Des.59 (2014) 383. 10.1016/j.matdes.2014.02.053Search in Google Scholar
[18] S.Poria, P.Sahoo, G.Sutradhar: Silicon8 (2016) 591. 10.1007/s12633-016-9437-5Search in Google Scholar
[19] C.A.Partheeban, M.Rajendran, S.C.Vettivel, S.Suresh, N.S.Moorthi: Mater. Sci. Eng. A632 (2015) 632: 1. 10.1016/j.msea.2015.02.064Search in Google Scholar
[20] J.P.Immarigeon, R.T.Holt, A.K.Koul, L.Zhao, W.Wallace, J.C.Beddoes: Mater. Charact.35 (1995) 41. 10.1016/1044-5803(95)00066-6Search in Google Scholar
[21] L.H.Hihara: Corros. Rev.15 (1997) 361. 10.1515/CORRREV.1997.15.3-4.361Search in Google Scholar
[22] H.Sun, N.Ma, D.Chen, X.Li, H.Wang: Surf. Coat. Technol.203 (2008) 329. 10.1016/j.surfcoat.2008.09.007Search in Google Scholar
[23] H.H.Uhlig: Uhlig's corrosion handbook, Vol. 51, John Wiley & Sons. (2011) 488.Search in Google Scholar
[24] S.Roy, P.Sahoo: Int. J. Mech. Mat. Eng. (2014) 1. 10.1186/s40712-014-0010-ySearch in Google Scholar
[25] P.Gadhari, P.Sahoo: Surf. Rev. Lett. (2016) 1550082. 10.1142/S0218625X15500821Search in Google Scholar
[26] S.Poria, G.Sutradhar, P.Sahoo: Surf. Rev. Lett. (2017) 1850122. 10.1142/S0218625X18501226Search in Google Scholar
[27] H.M.Rajan, S.Ramabalan, I.Dinaharan, S.J.Vijay: Arch. Civ. Mech. Eng.14 (2014) 72. 10.1016/j.acme.2013.05.005Search in Google Scholar
[28] H.F.Tian, J.W.Qiao, H.J.Yang, Y.S.Wang, P.K.Liaw, A.D.Lan: Appl. Surf. Sci.363 (2016) 37. 10.1016/j.apsusc.2015.11.243Search in Google Scholar
[29] B.Mingo, R.Arrabal, M.Mohedano, A.Pardo, E.Matykina: Surf. Coat. Technol.309 (2017) 1023. 10.1016/j.surfcoat.2016.10.041Search in Google Scholar
[30] F.Toptan, A.Rego, A.C.Alves, A.Guedes: J. Mech. Behav. Biomed. Mater.61 (2016) 152. PMid:26866451; 10.1016/j.jmbbm.2016.01.024Search in Google Scholar PubMed
[31] D.S.Qian, X.L.Zhong, T.Hashimoto, Y.Z.Yan, Z.Liu: Appl. Surf. Sci.330 (2015) 280. 10.1016/j.apsusc.2014.12.132Search in Google Scholar
[32] S.Tiwari, R.Balasubramaniam, M.Gupta: Corros. Sci.49 (2007) 711. 10.1016/j.corsci.2006.05.047Search in Google Scholar
[33] A.Pardo, M.C.Merino, R.Arrabal, S.FeliuJr., F.Viejo, M.Carboneras: Electrochim. Acta51 (2006) 4367. 10.1016/j.electacta.2005.12.016Search in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Nanoindentation analysis methods examined with finite element simulations
- Experimental investigation of gas/matte/spinel equilibria in the Cu–Fe–O–S system at 1250°C and P(SO2) = 0.25 atm
- Replacing martensite with nanobainite in moderately alloyed carburised steel for better wear performance
- Microstructure, hardness and wear behaviour of NbC reinforced AA7075 matrix composites fabricated by friction stir processing
- Microstructure, mechanical, and high-stress abrasive wear behaviour of as-cast and heat-treated Al–Si–SiCp composite
- Mechanical and morphological properties of bamboo mesoparticle/nylon 6 composites
- Particle and microstructural characteristics in the coarse-grained heat-affected zone of Al–Ti–Ca complex deoxidized steels
- Corrosion behavior of stir-cast Al–TiB2 metal matrix composites
- Correlation between anodization variables and surface properties of titania nanotube arrays for dye-sensitized solar cells
- Wetting and sealing of the interface between silicate glass and copper
- Short Communications
- Investigation of MWCNTs addition on mechanical properties of cordierite glass-ceramic composites
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Nanoindentation analysis methods examined with finite element simulations
- Experimental investigation of gas/matte/spinel equilibria in the Cu–Fe–O–S system at 1250°C and P(SO2) = 0.25 atm
- Replacing martensite with nanobainite in moderately alloyed carburised steel for better wear performance
- Microstructure, hardness and wear behaviour of NbC reinforced AA7075 matrix composites fabricated by friction stir processing
- Microstructure, mechanical, and high-stress abrasive wear behaviour of as-cast and heat-treated Al–Si–SiCp composite
- Mechanical and morphological properties of bamboo mesoparticle/nylon 6 composites
- Particle and microstructural characteristics in the coarse-grained heat-affected zone of Al–Ti–Ca complex deoxidized steels
- Corrosion behavior of stir-cast Al–TiB2 metal matrix composites
- Correlation between anodization variables and surface properties of titania nanotube arrays for dye-sensitized solar cells
- Wetting and sealing of the interface between silicate glass and copper
- Short Communications
- Investigation of MWCNTs addition on mechanical properties of cordierite glass-ceramic composites
- DGM News
- DGM News