Startseite The influence of twinning on plastic constitutive description of a magnesium alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The influence of twinning on plastic constitutive description of a magnesium alloy

  • Heng Li , Zhao Liu , Zhen Zhang , Jinhua Peng , Yaozu Li , Peng Guo und Yucheng Wu
Veröffentlicht/Copyright: 29. November 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

During uniaxial compression tests of a twin-roll cast AZ31 alloy, the orientation induced anisotropy only lay in the initial strain range, which was attributed to the different twinning systems that were involved. Regardless of the initial orientation, contraction twinning always played an important role at higher strain range, especially with higher strain rate and lower temperature. At temperature higher than 300 °C, dynamic recrystallization would dominate. A single modified Arrhenius equation ˙=[sinh(ασ)]nexp(Q/RT) was used to describe the flow behavior for all experimental conditions. The n value was found to be higher at lower temperature when compression twinning was prevalent. Meanwhile the deformation activation energy was somewhat lower, which was attributed to the twinning induced softening effect.


*Correspondence address, Zhen Zhang, School of Materials Science and Engineering, Hefei University of Technology, Tunxi Road, Hefei 230001, P.R. China, Tel.: +860551-62901362, E-mail: , Web: http://mse.hfut.edu.cn/

References

[1] S.A.Torbati-Sarraf, S.Sabbaghianrad, R.B.Figueiredo, T.G.Langdon: J. Alloys Compd.712 (2017) 185. 10.1016/j.jallcom.2017.04.054Suche in Google Scholar

[2] J.Jia, Y.Xu, Y.Yang, C.Chen, W.C.Liu, L.X.Hu, J.T.Luo: J. Alloys Compd.721 (2017) 347. 10.1016/j.jallcom.2017.06.009Suche in Google Scholar

[3] B.Pourbahari, H.Mirzadeh, M.Emamy: Mater. Sci. Eng. A680 (2017) 39. 10.1016/j.msea.2016.10.084Suche in Google Scholar

[4] J.F.Liu, Q.D.Wang, H.Zhou, W.Guo: J. Alloys Compd.589 (2014) 372. 10.1016/j.jallcom.2013.12.008Suche in Google Scholar

[5] S.Mironov, T.Onuma, Y.S.Sato, S.Yoneyama, H.Kokawa: Mater. Sci. Eng. A679 (2017) 272. 10.1016/j.msea.2016.10.036Suche in Google Scholar

[6] M.R.Barnett: Mater. Sci. Eng. A464 (2007) 1. 10.1016/j.msea.2006.12.037Suche in Google Scholar

[7] M.R.Barnett: Mater. Sci. Eng. A464 (2007) 8. 10.1016/j.msea.2007.02.109Suche in Google Scholar

[8] S.E.Ion, F.J.Humphreys, S.H.White: Acta Metall.30 (1982) 1909. 10.1016/0001-6160(82)90031-1Suche in Google Scholar

[9] M.R.Barnett: Journal of Light Metals1 (2001) 167. 10.1016/S1471-5317(01)00010-4Suche in Google Scholar

[10] H.J.Frost, M.F.Ashby: Deformation mechanisum maps, Pergamon Press, Oxford (1982).Suche in Google Scholar

[11] A.Galiyev, O.Sitdikov, R.Kaibyshev: Mater. Trans.44 (2003) 426. 10.2320/matertrans.44.426Suche in Google Scholar

[12] A.Galiyev, R.Kaibyshev, G.Gottstein: Acta Mater.49 (2001) 1199. 10.1016/S1359-6454(01)00020-9Suche in Google Scholar

[13] E.Rauch, M.Veron, J.Portillo, D.Bultreys, Y.Maniette, S.Nicolopoulos: Microsc. Anal.128 (2008) S5.Suche in Google Scholar

[14] C.M.Sellars, W.J.Mctegart: Acta Metall.4 (1966) 1136. 10.1016/0001-6160(66)90207-0Suche in Google Scholar

[15] B.C.Wonsiewcz, W.A.Backon: T. Metall. Soc. AIME239 (1967) 1422.Suche in Google Scholar

[16] R.E.Reedhill: T. Metall. Soc. AIME218 (1960) 554.Suche in Google Scholar

[17] W.H.Hartt, R.E.Reedhill: T. Metall. Soc. AIME242 (1968) 1127.Suche in Google Scholar

Received: 2018-03-28
Accepted: 2018-07-20
Published Online: 2018-11-29
Published in Print: 2018-12-10

© 2018, Carl Hanser Verlag, München

Heruntergeladen am 15.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111717/pdf?lang=de
Button zum nach oben scrollen