Effects of rare-earth element addition and heat treatment on the microstructures and mechanical properties of Al-25 % Si alloy
-
Bo Dang
, Zengyun Jian and Junfeng Xu
Abstract
The effects of pouring temperature, the content of a rare earth (RE) metal modifier, and T6 heat treatment on the microstructure and mechanical properties of Al-25 % Si alloy were investigated. The results show that for the unmodified alloy, the morphology of primary Si was transformed from coarse polygons and platelets to fine polyhedral, and the average size decreased with increasing pouring temperature. The primary Si exhibited a small blocky morphology with an average size of 47 μm at an optimal content of 1.2 % RE. The tensile strength and elongation were enhanced by the addition of RE followed by the T6 heat treatment, and the maximum tensile strength and elongation (208.3 MPa and 1.01 %) were obtained for the sample modified with 1.2 % RE followed by the T6 heat treatment.
References
[1] T.R.Prabhu: Acta Metall. Sin. (Engl. Lett.)28 (2015) 909. 10.1007/s40195-015-0275-zSearch in Google Scholar
[2] M.Franco, T.H.Krishna, A.M.Pillai, A.Rajendra, A.K.Sharma: Acta Metall. Sin. (Engl. Lett.)26 (2013) 647. 10.1007/s40195-013-0091-2Search in Google Scholar
[3] D.Q.Wan: Trans. Nonferrous Met. Soc. China22 (2012) 1051. 10.1016/s1003-6326(11)61282-xSearch in Google Scholar
[4] D.Wang, C.S.He, H.Wang, X.Zhao, L.Zuo: Acta. Metall. Sin. (Engl. Lett.)27 (2014) 245. 10.1007/s40195-014-0052-4Search in Google Scholar
[5] A.M.Samuel, G.H.Garza-Elizondo, H.W.Doty, F.H.Samuel: Mater. Des.80 (2015) 99. 10.1016/j.matdes.2015.05.013Search in Google Scholar
[6] Q.L.Li, T.D.Xia, Y.F.Lan, P.F.Li, L.Fan: Mater. Sci. Eng.A588 (2013) 97. 10.1016/j.msea.2013.09.017Search in Google Scholar
[7] W.X.Shi, B.Gao, G.F.Tu, S.W.Li: J. Alloys Compd.508 (2010) 480. 10.1016/j.jallcom.2010.08.098Search in Google Scholar
[8] W.X.Shi, B.Gao, G.F.Tu, S.W.Li, Y.Hao, F.X.Yu: J. Rare Earths28 (2010) 367. 10.1016/s1002-0721(10)60363-8Search in Google Scholar
[9] J.Y.Chang, G.H.Kim, I.G.Moon, C.S.Choi: Scr. Mater.39 (1998) 307. 10.1016/s1359-6462(98)00168-7Search in Google Scholar
[10] W.M.Jiang, Z.T.Fan, Y.C.Dai, C.Li: Mater. Sci. Eng. A597 (2014) 237. 10.1016/j.msea.2014.01.009Search in Google Scholar
[11] S.A.Al Kahtani, H.W.Doty, F.H.Samuel: Int. J. Cast Metal. Res.27 (2014) 38. 10.1179/1743133613y.0000000077Search in Google Scholar
[12] P.A.Rometsch, Y.Zhang, S.Knight: Trans. Nonferrous Met. Soc. China24 (2014) 2003. 10.1016/s1003-6326(14)63306-9Search in Google Scholar
[13] H.M.A.Azmah, C.S.Chang, C.O.Khang: Mater. Des.32 (2011) 2334. 10.1016/j.matdes.2010.12.040Search in Google Scholar
[14] A.K.Gupta, B.K.Prasad, R.K.Pajnoo, S.Das: Trans. Nonferrous Met. Soc. China22 (2012) 1041. 10.1016/s1003-6326(11)61281-8Search in Google Scholar
[15] C.W.Liao, J.C.Chen, Y.L.Li, H.Chen, C.X.Pan: Prog. Nat. Sci.-Mater.24 (2014) 87. 10.1016/j.pnsc.2014.03.002Search in Google Scholar
[16] H.F.C.Robles, M.B.Djurdjevic, W.T.Kierkus, J.H.Sokolowski: Mater. Sci. Eng. A396 (2005) 271. 10.1016/j.msea.2005.01.024Search in Google Scholar
[17] C.L.Xu, Q.C.Jiang: Mater. Sci. Eng. A437 (2006) 451. 10.1016/j.msea.2006.07.088Search in Google Scholar
[18] Z.W.Chen, W.Q.Jie, R.J.Zhang: Mater. Lett.59 (2005) 2183. 10.1016/j.matlet.2004.08.047Search in Google Scholar
[19] M.C.Dahlborg, P.S.Popel, M.J.Kramer, M.Besser, J.R.Morris, U.Dahlborg: J. Alloys Compd.550 (2013) 9. 10.1016/j.jallcom.2012.09.086Search in Google Scholar
[20] X.R.Liu, Y.D.Zhang, B.Beausir, F.Liu, C.Esling, F.X.Yu: Acta Mater.97 (2015) 338. 10.1016/j.actamat.2015.06.041Search in Google Scholar
[21] Y.H.Zhang, X.C.Miao, Z.Y.Shen, Q.Y.Han, C.J.Song, Q.J.Zhai: Acta Mater.97 (2015) 357. 10.1016/j.actamat.2015.07.002Search in Google Scholar
[22] J.H.Li, X.D.Wang, T.H.Ludwig, Y.Teunekawa, L.Arnberg, J.Z.Jiang, P.Schumacher: Acta Mater.84 (2015) 153. 10.1016/j.actamat.2014.10.064Search in Google Scholar
[23] U.Patakham, J.Kajornchaiyakul, C.Limmaneevichitr: J. Alloys Compd.542 (2012) 177. 10.1016/j.jallcom.2012.07.018Search in Google Scholar
[24] S.Hedge, K.N.Prabhu: J. Mater. Sci.43 (2008) 3009. 10.1007/s10853-008-2505-5Search in Google Scholar
[25] D.X.Yang, X.Y.Li, D.Y.He, H.Huang: Mater. Sci. Eng. A561 (2013) 226. 10.1016/j.msea.2012.11.002Search in Google Scholar
[26] M.F.Kilicaslan, W.R.Lee, T.H.Lee, Y.Sohn, S.J.Hong: Mater. Lett.71 (2012) 164. 10.1016/j.matlet.2011.12.050Search in Google Scholar
[27] M.F.Kilicaslan: J. Alloys Compd.606 (2014) 86. 10.1016/j.jallcom.2014.04.020Search in Google Scholar
[28] F.Y.Cao, Y.D.Jia, K.G.Prashanth, P.Ma, J.S.Liu, S.Scudino, F.Huang, J.Eckert, J.F.Sun: Mater. Des.74 (2015) 150. 10.1016/j.matdes.2015.03.008Search in Google Scholar
[29] D.K.Dwivedi, A.Sharma, T.V.Rajan: Mater. Manuf. Process.20 (2005) 777. 10.1081/amp-200055138Search in Google Scholar
© 2017, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Formation of intermetallic compounds and their effect on mechanical properties of aluminum–titanium alloy films
- Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys
- Effects of rare-earth element addition and heat treatment on the microstructures and mechanical properties of Al-25 % Si alloy
- Effects of silicon on characteristics of dynamic strain aging in a near-α titanium alloy
- Influence of heat treatment on the structure, hardness and strength of ZnAl40Cu3 alloy
- W–Cu composites subjected to heavy hot deformation
- Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route
- Mechanical properties of nano-SiO2 reinforced 3D glass fiber/epoxy composites
- Reinforcement effect and synergy of carbon nanofillers with different dimensions in high density polyethylene based nanocomposites
- Short Communications
- A general method towards transition metal monoboride nanopowders
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Formation of intermetallic compounds and their effect on mechanical properties of aluminum–titanium alloy films
- Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys
- Effects of rare-earth element addition and heat treatment on the microstructures and mechanical properties of Al-25 % Si alloy
- Effects of silicon on characteristics of dynamic strain aging in a near-α titanium alloy
- Influence of heat treatment on the structure, hardness and strength of ZnAl40Cu3 alloy
- W–Cu composites subjected to heavy hot deformation
- Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route
- Mechanical properties of nano-SiO2 reinforced 3D glass fiber/epoxy composites
- Reinforcement effect and synergy of carbon nanofillers with different dimensions in high density polyethylene based nanocomposites
- Short Communications
- A general method towards transition metal monoboride nanopowders
- DGM News
- DGM News