Home Dislocation dynamics modeling of plastic deformation in single-crystal copper at high strain rates
Article
Licensed
Unlicensed Requires Authentication

Dislocation dynamics modeling of plastic deformation in single-crystal copper at high strain rates

  • Arash Hosseinzadeh Delandar , Seyed Masood Hafez Haghighat , Pavel Korzhavyi and Rolf Sandström
Published/Copyright: November 3, 2016
Become an author with De Gruyter Brill

Abstract

Tensile deformation of single-crystal copper along [001] orientation is modeled. Single crystal is deformed at three sets of high strain rates, ranging from 103 to 105 s−1, using the three-dimensional dislocation dynamics technique to simulate dislocation microstructure evolution and the resultant macroscopic response. Two initial dislocation configurations consisting of straight dislocations and Frank–Read sources are randomly distributed over the simulation volume with an edge length of 1 μm. For both initial setups, the mechanical response of the single crystal to the external loading demonstrates a considerable effect of strain rate. In addition, strain rate influences dislocation density evolution and consequently development of the dislocation microstructure. At all applied strain rates for both initial dislocation setups, dislocations evolve into a heterogeneous microstructure and this heterogeneity increases with plastic strain and strain rate.


*Correspondence address, Arash Hosseinzadeh Delandar, PhD candidate, Royal Institute of Technology, Department of Materials Science and Engineering, Brinellvägen 23, 10044, Stockholm, Sweden, Tel.: +4687906544, E-mail:

References

[1] W.Tong, R.J.Clifton, S.Huang: J. Mech. Phys. Solids.40 (1992) 1251. 10.1016/0022-5096(92)90015-TSearch in Google Scholar

[2] F.E.Hauser: Exp. Mech.6 (1966) 395. 10.1007/BF02326284Search in Google Scholar

[3] J.W.Edington: Philos. Mag.19 (1969) 1189. 10.1080/14786436908228644Search in Google Scholar

[4] F.Dušek, Z.Jasinski, J.Buchar, A.Litwora, A.Piatkowski: J. Phys. B26 (1976) 538. 10.1007/BF01586886Search in Google Scholar

[5] M.Stelly, R.Dormeval, in: High Velocity Deformation of Solids: Springer, Berlin, Heidelberg (1979) 82. 10.1007/978-3-642-67208-8_7Search in Google Scholar

[6] P.S.Follansbee, U.F.Kocks, G.Regazzoni: J. Phys. Colloq.46 (1985) C525. 10.1051/jphyscol:1985504Search in Google Scholar

[7] D.J.Steinberg, S.G.Cochran, M.W.Guinan: J. Appl. Phys.51 (1980) 1498. 10.1063/1.327799Search in Google Scholar

[8] F.J.Zerilli, R.W.Armstrong: J. Appl. Phys.61 (1987) 1816. 10.1063/1.338024Search in Google Scholar

[9] P.S.Follansbee, U.F.Kocks: Acta Metall.36 (1988) 81. 10.1016/0001-6160(88)90030-2Search in Google Scholar

[10] D.L.Preston, D.L.Tonks, D.C.Wallace: J. Appl. Phys.93 (2003) 211. 10.1063/1.1524706Search in Google Scholar

[11] B.L.Hansen, I.J.Beyerlein, C.A.Bronkhorst, E.K.Cerreta, D.Dennis-Koller: Int. J. Plast.44 (2013) 129. 10.1016/j.ijplas.2012.12.006Search in Google Scholar

[12] M.A.Shehadeh, H.M.Zbib, T. Diazde la Rubia: Int. J. Plast.21 (2005) 2369. 10.1016/j.ijplas.2004.12.004Search in Google Scholar

[13] V.V.Bulatov, W.Cai: Computer simulations of dislocations, Oxford University Press, Oxford (2006).10.1093/oso/9780198526148.001.0001Search in Google Scholar

[14] L.P.Kubin, G.Canova, M.Condat, B.Devincre, V.Pontikis, Y.Bréchet: Solid State Phenom.23–24 (1992) 455. 10.4028/www.scientific.net/SSP.23-24.455Search in Google Scholar

[15] B.Devincre, L.P.Kubin: Mater. Sci. Eng. A234–236 (1997) 8. 10.1016/S0921-5093(97)00146-9Search in Google Scholar

[16] H.M.Zbib, M.Rhee, J.P.Hirth: Int. J. Mech. Sci.40 (1998) 113. 10.1016/S0020-7403(97)00043-XSearch in Google Scholar

[17] K.W.Schwarz: J. Appl. Phys.85 (1999) 108. 10.1063/1.369429Search in Google Scholar

[18] V.Shenoy, R.Kukta, R.Phillips: Phys. Rev. Lett.84 (2000) 1491. 10.1103/PhysRevLett.84.1491Search in Google Scholar PubMed

[19] G.Monnet, B.Devincre, L.P.Kubin: Acta Mater.52 (2004) 4317. 10.1016/j.actamat.2004.05.048Search in Google Scholar

[20] Z.Wang, N.Ghoniem, S.Swaminarayan, R.LeSar: J. Comput. Phys.219 (2006) 608. 10.1016/j.jcp.2006.04.005Search in Google Scholar

[21] A.Arsenlis, W.Cai, M.Tang, M.Rhee, T.Oppelstrup, G.Hommes, T.G.Pierce1, V.V.Bulatov: Simul. Mater. Sci. Eng.15 (2007) 553. 10.1088/0965-0393/15/6/001Search in Google Scholar

[22] Z.Q.Wang, I.J.Beyerlein, R.Lesar: Philos. Mag.87 (2007) 2263. 10.1080/14786430601153422Search in Google Scholar

[23] A.Roos, J.T.De Hosson, E.Van der Giessen: Comput. Mater. Sci.20 (2001) 19. 10.1016/S0927-0256(00)00118-XSearch in Google Scholar

[24] A.Arsenlis, M.Rhee, G.Hommes, R.Cook, J.Marian: Acta Mater.60 (2012) 3748. 10.1016/j.actamat.2012.03.041Search in Google Scholar

[25] H.M.Zbib, T. Diazde la Rubia: Int. J. Plast.18 (2002) 1133. 10.1016/S0749-6419(01)00044-4Search in Google Scholar

[26] Z.Q.Wang, I.J.Beyerlein, R.Lesar: Int. J. Plast.25 (2009) 26. 10.1016/j.ijplas.2008.01.006Search in Google Scholar

[27] B.Zhang, V.P.W.Shim: Acta Mater.58 (2010) 6810. 10.1016/j.actamat.2010.09.009Search in Google Scholar

[28] K.Morii, H.Mecking, Y.Nakayama: Acta Metall.33 (1985) 379. 10.1016/0001-6160(85)90080-XSearch in Google Scholar

[29] J.C.Huang, G.T.Gray: Acta Metall.37 (1989) 3335. 10.1016/0001-6160(89)90206-XSearch in Google Scholar

[30] A.E.Mayer, E.N.Borodin, P.N.Mayer: Int. J. Plast.51 (2013) 188. 10.1016/j.ijplas.2013.05.005Search in Google Scholar

[31] Z.Q.Wang, I.J.Beyerlein, R.LeSar: Philos. Mag.88 (2008) 1321. 10.1080/14786430802129833Search in Google Scholar

[32] M.A.Shehadeh, H.M.Zbib, T. DiazDe La Rubia: Philos. Mag.85 (2005) 1667. 10.1080/14786430500036470Search in Google Scholar

Received: 2016-05-02
Accepted: 2016-08-11
Published Online: 2016-11-03
Published in Print: 2016-11-10

© 2016, Carl Hanser Verlag, München

Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111433/html?lang=en
Scroll to top button