Preparation and characterization of ZnO nanorod arrays produced using wet methods
-
Yu-hua Jhong
Abstract
Using a low temperature hydrothermal method, zinc oxide (ZnO) nanorod arrays were grown from seed layers coated on silicon substrates. The grown morphologies of the nanorod arrays heavily depend on the seed layer preparation methods. The grown nanorod arrays are of high density and good crystallinity with <002> preferred orientation for the nanorod arrays growing from uniformly distributed nucleation sites which are prepared on the seed layers by using the solvent ethanol. Using a conductive atomic force microscope, the dependence of the output current generated from the piezoelectric effect of bending a single nanorod was characterized. The output current increases with increasing the free bending lengths and applied force due to the increase in the deformation of the ZnO nanorods, and the maximum output current is 2.6 nA. The dependence of the bending-induced output current on the growth parameters, the nanorod array morphology and inclined orientation feature is discussed.
References
[1] Z.L.Wang: J. Phys.: Condens. Matter16 (2004) R829. 10.1088/0953-8984/16/25/R01Search in Google Scholar
[2] U.Ozgur, D.Hofstetter, H.Morkoc: Proc. IEEE98, issue 7 (2010) 1255. 10.1109/JPROC.2010.2044550Search in Google Scholar
[3] L.Vayssieres: Adv. Mater.15 (2003) 464. 10.1002/adma.200390108Search in Google Scholar
[4] P.X.Gao, Y.Ding, Z.L.Wang: Nano Lett.3 (2003) 1315. 10.1021/nl034548qSearch in Google Scholar
[5] C.H.Liu, J.A.Zapien, Y.Yao, X.M.Meng, C.S.Lee, S.S.Fan, Y.Lifshitz, S.T.Lee: Adv. Mater.15 (2003) 838. 10.1002/adma.200304430Search in Google Scholar
[6] Z.W.Pan, Z.R.Dai, Z.L.Wang: Science291 (2001) 1947. 10.1126/science.1058120Search in Google Scholar PubMed
[7] S.Hashimoto, A.Yamaguchi: J. Am. Ceram. Soc.79 (1996) 1121. 10.1111/j.1151-2916.1996.tb08559.xSearch in Google Scholar
[8] X.Y.Kong, Y.Ding, R.Yang, Z.L.Wang: Science303 (2004) 1348. 10.1126/science.1092356Search in Google Scholar PubMed
[9] C.Periasamy, P.Chakrabarti: J. Appl. Phys.109 (2011) 054306. 10.1063/1.3553862Search in Google Scholar
[10] Y.Wang, X.Li, N.Wang, X.Quan, Y.Chen: Sep. Purif. Technol.62 (2008) 727. 10.1016/j.seppur.2008.03.035Search in Google Scholar
[11] H.Zhang, J.Fang, J.Wang, M.Zhang: Mater. Lett.61 (2007) 5202. 10.1016/j.matlet.2007.04.030Search in Google Scholar
[12] Z.L.Wang, J.H.Song: Science312 (2006) 242. 10.1126/science.1124005Search in Google Scholar PubMed
[13] X.D.Wang, J.H.Song, J.Liu, Z.L.Wang: Science316 (2007) 102. 10.1126/science.1139366Search in Google Scholar PubMed
[14] M.H.Huang, Y.Y.Wu, H.Feick, N.Tran, E.Weber, P.D.Yang: Adv. Mater.13 (2001) 113. 10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-HSearch in Google Scholar
[15] Y.Sun, G.M.Fuge, M.N.R.Ashfold: Chem. Phys. Lett.396 (2004) 21. 10.1016/j.cplett.2004.07.110Search in Google Scholar
[16] C.K.Xu, G.D.Xu, Y.K.Liu, G.H.Wang: Solid State Commun.122 (2002) 175. 10.1016/S0038-1098(02)00114-XSearch in Google Scholar
[17] J.Wang, L.Gao: J. Mater. Chem.13 (2003) 2551. 10.1039/B307565FSearch in Google Scholar
[18] M.Guo, P.Diao, S.Cai: J. Solid State Chem.178 (2005) 1864. 10.1016/j.jssc.2005.03.031Search in Google Scholar
[19] S.-H.Yi, S.-K.Choi, J.-M.Jang, J.-A.Kim, W.-G.Jung: J. Colloid Interface Sci.313 (2007) 705. 10.1016/j.jcis.2007.05.006Search in Google Scholar
[20] Q.Li, J.Bian, J.Sun, J.Wang, Y.Luo, K.Sun, D.Yu: Appl. Surf. Sci.256 (2010) 1698. 10.1016/j.apsusc.2009.09.097Search in Google Scholar
[21] Y.J.Kim, H.Shang, G.Cao: J. Sol-gel Sci. Technol.38 (2006) 79. 10.1007/s10971-006-5731-9Search in Google Scholar
[22] Z.Han, S.Li, J.Chu, Y.Chen: J. Semicond.34 (2013) 063002. 10.1088/1674-4926/34/6/063002Search in Google Scholar
[23] N.Nagayasamy, S.Gandhimathination, V.Veerasamy: Open J. Metal3 (2013) 8. 10.4236/ojmetal.2013.32A2002Search in Google Scholar
[24] R.Razali, A.K.Zak, W.H.Abd Majid, M.Darroudi: Ceram. Int.37 (2011) 3657. 10.1016/j.ceramint.2011.06.026Search in Google Scholar
[25] T.Y.Olson, A.A.Chernov, B.A.Drabek, J.H.Satcher, T.Y.-J.Han: Chem. Mater.25 (2013) 1363. 10.1021/cm300679xSearch in Google Scholar
[26] Z.L.Wang, X.Wang, J.Song, J.Liu, Y.Gao: IEEE Pervasive Comput.7 (2008) 49. 10.1109/MPRV.2008.14Search in Google Scholar
[27] J.M.Gere, S.P.Timoshenko: Mechanics of Materials, 2nd Ed., Brooks/Cole Eng. Div.Monterey CA, (1984) 369. 10.1007/978-1-4899-3124-5Search in Google Scholar
[28] C.Q.Chen, Y.Shi, Y.S.Zhang, J.Zhu, Y.J.Yan: Phys. Rev. Lett.96 (2006) 075505. 10.1103/PhysRevLett.96.075505Search in Google Scholar PubMed
[29] M.-H.Zhao, Z.-L.Wang, S.X.Mao: Nano Lett.4 (2004) 587. 10.1021/nl035198aSearch in Google Scholar
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Nanoindentation of carbon microspheres
- Thermal and mechanical properties of single-walled and multi-walled carbon nanotube polycarbonate polyurethane composites with a focus on self-healing
- Preparation and characterization of ZnO nanorod arrays produced using wet methods
- Phase equilibria of the Al–Zn–Fe–V quaternary system at 620 °C
- Effect of withdrawal rate and zinc content on pore structure and morphology of lotus-type porous Cu–Zn alloys fabricated using continuous casting
- Investigation of tungsten surface changes after interaction with dense plasma streams compared with the results given by a simple 1D model
- Investigation of Al2O3/TiC ceramic cutting tool materials with the addition of SiC-coated h-BN: preparation, mechanical properties, microstructure and wear resistance
- Effect of the addition of different sintering aids on the densification behavior of zirconia-toughened alumina nanocomposite powder
- Mixed mode notch-crack fatigue propagation in the welding zone of 06Cr19Ni10 austenitic stainless steel: Effect of strain strengthening
- A study on mechanical and microstructural properties of dissimilar FSWed joints of AA5251–AA5083 plates
- Short Communications
- A methodology for in-situ micro-compression testing of fiber composites
- The synthesis and electrochemical performance of Cu6Sn5 intermetallic nanoparticles as anode material in Li ion batteries
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Nanoindentation of carbon microspheres
- Thermal and mechanical properties of single-walled and multi-walled carbon nanotube polycarbonate polyurethane composites with a focus on self-healing
- Preparation and characterization of ZnO nanorod arrays produced using wet methods
- Phase equilibria of the Al–Zn–Fe–V quaternary system at 620 °C
- Effect of withdrawal rate and zinc content on pore structure and morphology of lotus-type porous Cu–Zn alloys fabricated using continuous casting
- Investigation of tungsten surface changes after interaction with dense plasma streams compared with the results given by a simple 1D model
- Investigation of Al2O3/TiC ceramic cutting tool materials with the addition of SiC-coated h-BN: preparation, mechanical properties, microstructure and wear resistance
- Effect of the addition of different sintering aids on the densification behavior of zirconia-toughened alumina nanocomposite powder
- Mixed mode notch-crack fatigue propagation in the welding zone of 06Cr19Ni10 austenitic stainless steel: Effect of strain strengthening
- A study on mechanical and microstructural properties of dissimilar FSWed joints of AA5251–AA5083 plates
- Short Communications
- A methodology for in-situ micro-compression testing of fiber composites
- The synthesis and electrochemical performance of Cu6Sn5 intermetallic nanoparticles as anode material in Li ion batteries
- DGM News
- DGM News