Home Preparation and characterization of ZnO nanorod arrays produced using wet methods
Article
Licensed
Unlicensed Requires Authentication

Preparation and characterization of ZnO nanorod arrays produced using wet methods

Paper presented at the Symposium “Micromechanics of Advanced Materials III (Symposium in Honor of Professor James C. M. Li's 90th Birthday)”, Material Science & Technology Conference and Exhibition (MS&T 2015), 4 – 8 October 2015, Columbus, OH, USA
  • Yu-hua Jhong , Chin-Tien Yang , Ling-ko Chang , Der-ray Huang and Donyau Chiang
Published/Copyright: August 3, 2016
Become an author with De Gruyter Brill

Abstract

Using a low temperature hydrothermal method, zinc oxide (ZnO) nanorod arrays were grown from seed layers coated on silicon substrates. The grown morphologies of the nanorod arrays heavily depend on the seed layer preparation methods. The grown nanorod arrays are of high density and good crystallinity with <002> preferred orientation for the nanorod arrays growing from uniformly distributed nucleation sites which are prepared on the seed layers by using the solvent ethanol. Using a conductive atomic force microscope, the dependence of the output current generated from the piezoelectric effect of bending a single nanorod was characterized. The output current increases with increasing the free bending lengths and applied force due to the increase in the deformation of the ZnO nanorods, and the maximum output current is 2.6 nA. The dependence of the bending-induced output current on the growth parameters, the nanorod array morphology and inclined orientation feature is discussed.


*Correspondence address, Dr. Donyau Chiang, Instrument Technology Research Center, National Applied Research Laboratories, 20, R&D Rd. VI, Hsinchu Science Park, Hsinchu, 30076, Taiwan, Tel.: +886-3577-9911, Fax: +886-3563-2253, E-mail:

References

[1] Z.L.Wang: J. Phys.: Condens. Matter16 (2004) R829. 10.1088/0953-8984/16/25/R01Search in Google Scholar

[2] U.Ozgur, D.Hofstetter, H.Morkoc: Proc. IEEE98, issue 7 (2010) 1255. 10.1109/JPROC.2010.2044550Search in Google Scholar

[3] L.Vayssieres: Adv. Mater.15 (2003) 464. 10.1002/adma.200390108Search in Google Scholar

[4] P.X.Gao, Y.Ding, Z.L.Wang: Nano Lett.3 (2003) 1315. 10.1021/nl034548qSearch in Google Scholar

[5] C.H.Liu, J.A.Zapien, Y.Yao, X.M.Meng, C.S.Lee, S.S.Fan, Y.Lifshitz, S.T.Lee: Adv. Mater.15 (2003) 838. 10.1002/adma.200304430Search in Google Scholar

[6] Z.W.Pan, Z.R.Dai, Z.L.Wang: Science291 (2001) 1947. 10.1126/science.1058120Search in Google Scholar PubMed

[7] S.Hashimoto, A.Yamaguchi: J. Am. Ceram. Soc.79 (1996) 1121. 10.1111/j.1151-2916.1996.tb08559.xSearch in Google Scholar

[8] X.Y.Kong, Y.Ding, R.Yang, Z.L.Wang: Science303 (2004) 1348. 10.1126/science.1092356Search in Google Scholar PubMed

[9] C.Periasamy, P.Chakrabarti: J. Appl. Phys.109 (2011) 054306. 10.1063/1.3553862Search in Google Scholar

[10] Y.Wang, X.Li, N.Wang, X.Quan, Y.Chen: Sep. Purif. Technol.62 (2008) 727. 10.1016/j.seppur.2008.03.035Search in Google Scholar

[11] H.Zhang, J.Fang, J.Wang, M.Zhang: Mater. Lett.61 (2007) 5202. 10.1016/j.matlet.2007.04.030Search in Google Scholar

[12] Z.L.Wang, J.H.Song: Science312 (2006) 242. 10.1126/science.1124005Search in Google Scholar PubMed

[13] X.D.Wang, J.H.Song, J.Liu, Z.L.Wang: Science316 (2007) 102. 10.1126/science.1139366Search in Google Scholar PubMed

[14] M.H.Huang, Y.Y.Wu, H.Feick, N.Tran, E.Weber, P.D.Yang: Adv. Mater.13 (2001) 113. 10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-HSearch in Google Scholar

[15] Y.Sun, G.M.Fuge, M.N.R.Ashfold: Chem. Phys. Lett.396 (2004) 21. 10.1016/j.cplett.2004.07.110Search in Google Scholar

[16] C.K.Xu, G.D.Xu, Y.K.Liu, G.H.Wang: Solid State Commun.122 (2002) 175. 10.1016/S0038-1098(02)00114-XSearch in Google Scholar

[17] J.Wang, L.Gao: J. Mater. Chem.13 (2003) 2551. 10.1039/B307565FSearch in Google Scholar

[18] M.Guo, P.Diao, S.Cai: J. Solid State Chem.178 (2005) 1864. 10.1016/j.jssc.2005.03.031Search in Google Scholar

[19] S.-H.Yi, S.-K.Choi, J.-M.Jang, J.-A.Kim, W.-G.Jung: J. Colloid Interface Sci.313 (2007) 705. 10.1016/j.jcis.2007.05.006Search in Google Scholar

[20] Q.Li, J.Bian, J.Sun, J.Wang, Y.Luo, K.Sun, D.Yu: Appl. Surf. Sci.256 (2010) 1698. 10.1016/j.apsusc.2009.09.097Search in Google Scholar

[21] Y.J.Kim, H.Shang, G.Cao: J. Sol-gel Sci. Technol.38 (2006) 79. 10.1007/s10971-006-5731-9Search in Google Scholar

[22] Z.Han, S.Li, J.Chu, Y.Chen: J. Semicond.34 (2013) 063002. 10.1088/1674-4926/34/6/063002Search in Google Scholar

[23] N.Nagayasamy, S.Gandhimathination, V.Veerasamy: Open J. Metal3 (2013) 8. 10.4236/ojmetal.2013.32A2002Search in Google Scholar

[24] R.Razali, A.K.Zak, W.H.Abd Majid, M.Darroudi: Ceram. Int.37 (2011) 3657. 10.1016/j.ceramint.2011.06.026Search in Google Scholar

[25] T.Y.Olson, A.A.Chernov, B.A.Drabek, J.H.Satcher, T.Y.-J.Han: Chem. Mater.25 (2013) 1363. 10.1021/cm300679xSearch in Google Scholar

[26] Z.L.Wang, X.Wang, J.Song, J.Liu, Y.Gao: IEEE Pervasive Comput.7 (2008) 49. 10.1109/MPRV.2008.14Search in Google Scholar

[27] J.M.Gere, S.P.Timoshenko: Mechanics of Materials, 2nd Ed., Brooks/Cole Eng. Div.Monterey CA, (1984) 369. 10.1007/978-1-4899-3124-5Search in Google Scholar

[28] C.Q.Chen, Y.Shi, Y.S.Zhang, J.Zhu, Y.J.Yan: Phys. Rev. Lett.96 (2006) 075505. 10.1103/PhysRevLett.96.075505Search in Google Scholar PubMed

[29] M.-H.Zhao, Z.-L.Wang, S.X.Mao: Nano Lett.4 (2004) 587. 10.1021/nl035198aSearch in Google Scholar

Received: 2016-01-13
Accepted: 2016-06-02
Published Online: 2016-08-03
Published in Print: 2016-08-11

© 2016, Carl Hanser Verlag, München

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111399/html
Scroll to top button